THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)

EDQM

1964 - 2024

COUNCIL OF EUROPE

CONSEIL DE L'EUROPE

CombiStats online Training module 3

Assays based on quantitative responses

2 © EDQM, Council of Europe, 2024. All rights reserved.

Content

Introduction

- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

Indirect dilution assay

Common structure

- X = several preparations & doses
- Y = single or repeated measurements .

Quantitative responses

- Y = continuous/discrete data
 - E.g. ELISA (absorbance)

Doses	(1)	(2)
1/10	2.912	2.917
1/20	2.579	2.654
1/40	2.130	2.212
1/80	1.651	1.638
1/160	1.073	0.973
1/320	0.585	0.666
1/640	0.463	0.356
1/1280	0.266	0.234
1/2560	0.228	0.197
1/5120	0.176	0.215

Regression models in CombiStats

= f(X)

Ph. Eur. Chapter 5.3 Statistical analysis of results of biological assays and tests

1. introduction

 $\label{eq:constraint} \textbf{2.} \ \textbf{random} \textbf{sation} \ \textbf{and} \ \textbf{independence} \ \textbf{of} \ \textbf{individual} \ \textbf{treatments}$

3. assays depending upon quantitative responses

3.2. the parallel-line model

3.3. the slope-ratio model

3.4. extended sigmoid dose-response curves

4. assays depending upon quantal responses

4.2. the probit method

4.3. the logit method

4.5. the median effective dose

5. examples

6. combination of assay results

6.2. combination of independent assay results

6.3. unweighted combination of assay results

7. beyond this annex

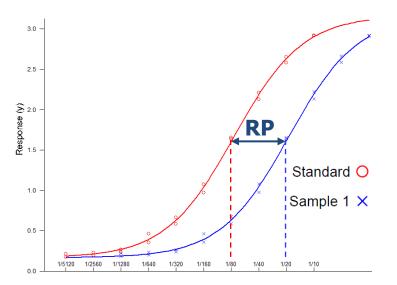
8. tables and generating procedures

9. glossary of symbols

10. literature

Several preparations

Ref. preparation known concentration

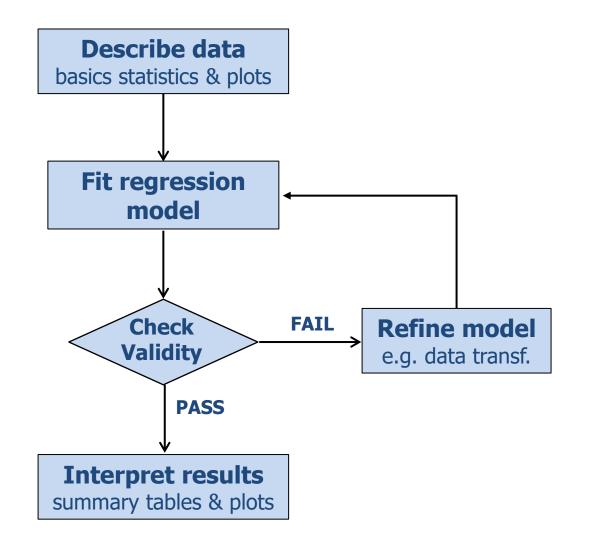

Sta			
Ass. pot.	0.4 IU/		
Doses	(1)	(2)	
1/10	2.912	2.917	2.915
1/20	2.579	2.654	2.617
1/40	2.130	2.212	2.171
1/80	1.651	1.638	1.645
1/160	1.073	0.973	1.023
1/320	0.585	0.666	0.626
1/640	0.463	0.356	0.410
1/1280	0.266	0.234	0.250
1/2560	0.228	0.197	0.213
1/5120	0.176	0.215	0.196

Test preparation(s) conc. to be determined

Sa			
Ass. pot.	?IU/m		
Doses	(1)	(2)	
1/2.5	2.914	2.921	2.918
1/5	2.586	2.662	2.624
1/10	2.133	2.220	2.177
1/20	1.654	1.640	1.647
1/40	1.078	0.974	1.026
1/80	0.587	0.674	0.631
1/160	0.465	0.361	0.413
1/320	0.268	0.238	0.253
1/640	0.232	0.200	0.216
1/1280	0.183	0.222	0.203

Ref. prep.: international standard (IS), certified reference material (CRM), biological reference preparation (BRP), etc.

Test prep.: candidate IS, CRM or BRP, manufactured batches, etc.



Test Preparation

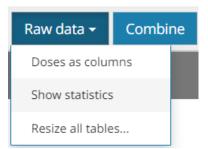
- Relative Potency (RP) $\sim 1/4$
- Potency ~ 0.1 IU/mL

Steps of statistical analysis

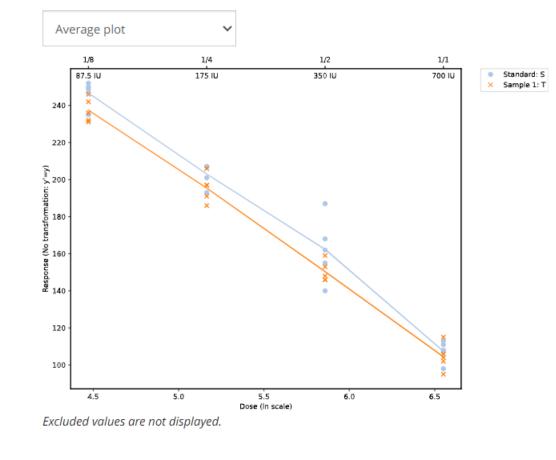
Data description

Purpose

- Check/correct any typos
- Assess data distribution (normal)
- Detect outliers, trend


How

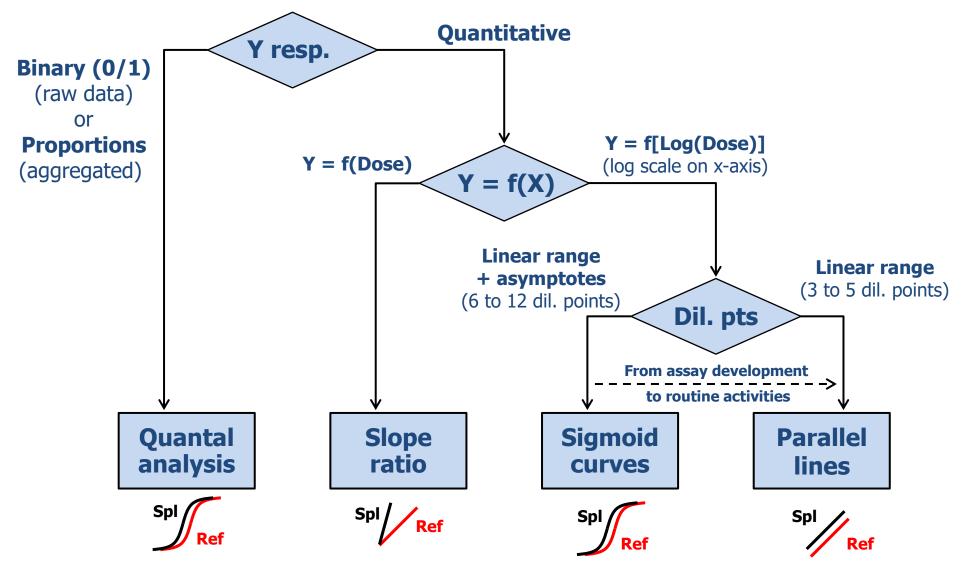
- Overview of raw data table
- Basic statistics (mean, std, ...)
- Scatterplot


Data description

Raw data

itan uutu								
		Table 1			:			
Preparation	ation Standard							
ID	S							
Potency	Assigne	ed						
Potency value	700 IU/	/vial						
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
1/8	252	249	247	250	235	247	7	2.7
1/4	207	201	193	207	207	203	6	3.0
1/2	168	187	162	155	140	162	17	10.6
1/1	113	107	111	108	98	107	6	5.4

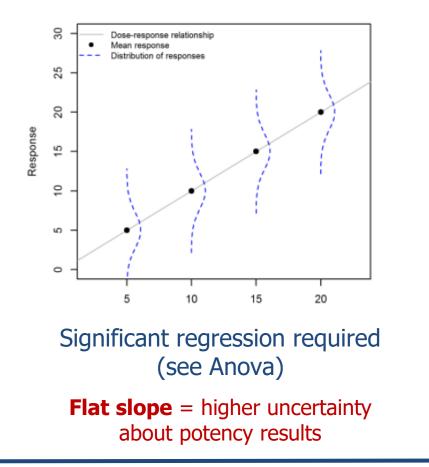
	Table 2							
Preparation	Sample	ample 1						
ID	Т							
Potency	Assum	ed						
Potency value	? IU/via	ıl						
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
1/8	242	236	246	231	232	237	6	2.7
1/4	206	197	197	191	186	195	8	3.8
1/2	146	153	148	159	146	150	6	3.7
1/1	115	102	104	106	95	104	7	6.9



Blank results

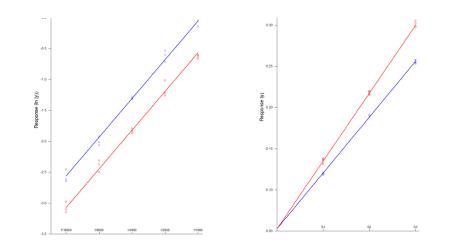
0.045	0.086	0.049	0.051	0.062	Mean	SD 0.016	RSD%
0.027	0.062	0.038	0.061	0.047	0.053	0.076	30.5

Regression models



8 © EDQM, Council of Europe, 2024. All rights reserved.

Model validity

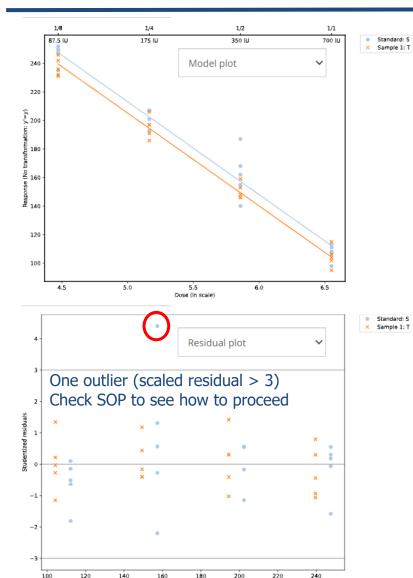

PLA and SRA = linear regression lines (Y = a + b X + error)

Independent data, normally distributed with same variance across dose range

"Good fit": the straight line best summarises data: visual check (regression plot, residual plot) and Anova (nonlinearity contrast)

- PLA: common slope => "Good parallelism" between reg. lines (visual check + Anova non-parallelism)
- SRA: common intercept (visual check + Anova intercept contrast

Content


Introduction

- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model

3-parameter exponential model

Model validity, ex 1.1

Anova	tab	le

Normal

~

Source of variation	Degrees of freedom	Probability	Level of significance
Preparations	1	0.006507	**
Regression	1	< 0.000001	***
Non-parallelism	1	0.565069	
Non-linearity	4	0.493324	
Non-linearity Table 1	2	0.218293	
Non-linearity Table 2	2	0.869200	
Treatments	7	< 0.000001	***
Residual error	32		
Total	39		

Comparison of slopes: non-parallelism contrast (Anova) **or** equivalence testing approach (not both)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard		
Standard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000		
Sample 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)		
Slopes: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).					

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Significant slope? Yes (***) Lack of parallelism? No (NS)

Lack of linearity? No (NS)

R² All 0.974576

R² Standard 0.965105

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Common Slope

Estimated value	-65.0800
Lower conf. Limit	-68.0645
Jpper conf. Limit	-62.0955

90% confidence level

Linear predictors

Model validity, ex 1.1

Advanced options

REGRESSION TYPE

Weighting

Robust regression (Huber's weights)	~
Unweighted regression	
Robust regression (Huber's weights)	

Robust regression to alleviate the potential negative effect of the outlier

classical regression (with outlier)

Equivalence of slopes

Pre	paration	Slope	Difference with Standard	Ratio with Standard	Estimated value	-65.0800	D ² AU 0.0745	
Star	ndard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000	Lower conf. Limit	-68.0645	R ² All 0.9745	
Sam	mple 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)	Upper conf. Limit	-62.0955	R ² Standard 0.9651	105

robust regression (with outlier)

Equivalence of slopes				(Common Slope			
Robust regression: in-between	Preparation	Slope	Difference with Standard	Ratio with Standard	Estimated value	-65.2150		weighted
solution when outliers are kept	Standard: S	-66.4107 (-70.0356, -62.7859)	0.000000	1.00000	Lower conf. Limit	-67.7593	R ² All	0.980847
in the data set	Sample 1: T	-64.0538 (-67.6259, -60.4817)	2.35694 (-2.73224, 7.44613)	0.964510 (0.891960, 1.04282)	Upper conf. Limit	-62.6707	R ² Standard	0.976214

classical regression (without outlier)

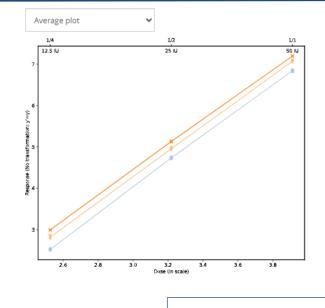
Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard	Estimated value	-65.5335
Standard: S	-67.0270 (-70.5932, -63.4608)	0.000000	1.00000	Lower conf. Limit	-68.0485
Sample 1: T	-64.0557 (-67.6031, -60.5082)	2.97134 (-2.05881, 8.00148)	0.955670 (0.884835, 1.03193)	Upper conf. Limit	-63.0184
	e limits (in brackets) calculated for a 9 ntios of slopes: confidence limits (in br	90% confide	ence level		

R² All 0.983445 R² Standard 0.982764

Common Slope

Common Slope


solution when outliers are ke in the data set

Comparison of slopes (1)

Tab					
Preparation	Standard				
Dose	Rep.1	Rep.2	Mean	SD	RSD%
1/1	6.86	6.82	6.84	0.03	0.4
1/2	4.72	4.75	4.73	0.02	0.4
1/4		2.51		0.02	0.8

Tab	le 2	:			
Preparation	Sample 1				
Dose	Rep.1	Rep.2	Mean	SD	RSD%
1/1		7.19			
1/2	5.12	5.14	5.13	0.01	0.3
1/4	3.00	2.99	3.00	0.01	0.2

Tab	le 3	:			
Preparation	Sample	e 2			
Dose	Rep.1	Rep.2	Mean	SD	RSD9
1/1	7.09	7.05	7.07	0.03	0.4
1/2	4.98	4.93	4.96	0.04	
1/4	2.85	2.79	2.82	0.04	1.5
ooled SD = sqr	+(0 000)65) -	0 0251		

Low variability between rep. (very good repeatability) = over sensitive statistical tests (Anova) = detection of signals (non-lin, non-par) of no practical relevance...

	Variances (SD ²)		
Dose	Std	Spl1	Spl2
1/1	0.00080	0.00005	0.00080
1/2	0.00045	0.00020	0.00125
1/4	0.00045	0.00005	0.00180
	- Po	oled var.	0.00065

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	3.11261 (3.07101, 3.15422)	0.000000	1.00000
Sample 1: T	3.02966 (2.98806, 3.07126)	-0.0829550 (-0.130632, -0.0352783)	0.973349 (0.958347, 0.988579)
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029	0.984936 (0.969848, 1.00026)

Average plot > parallelism looks good Individual slopes > ratios are indeed close to 1 Anova > however, non-parallelism is significant (*) What is going wrong?

Anova table

signal/error

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

= 5.11538

0.000650

EDOM COUNCIL OF EUROPE

Comparison of slopes (2)

Option 1: difference testing approach
 = non-parallelism contrast (Anova table)

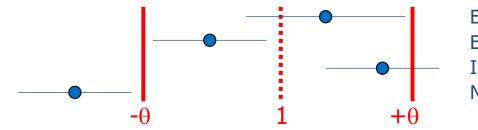
Anova table

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

Tested against residual error, i.e. variance between replicates

Low variance (high repeatability) => stat test likely to wrongly reject an assay where individual slopes are close • **Option 2**: equivalence testing approach

= requires **predefined** equivalence margins $(\pm \Theta)$

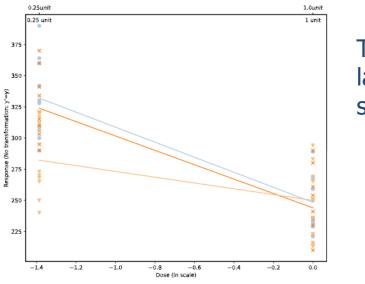

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	3.11261 (3.07101, 3.15422)	0.000000	1.00000
Sample 1: T	3.02966 (2.98806, 3.07126)	-0.0829550 (-0.130632, -0.0352783)	0.973349 (0.958347, 0.988579)
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029)	0.984936 (0.969848, 1.00026)

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Use differences or ratios (not both)

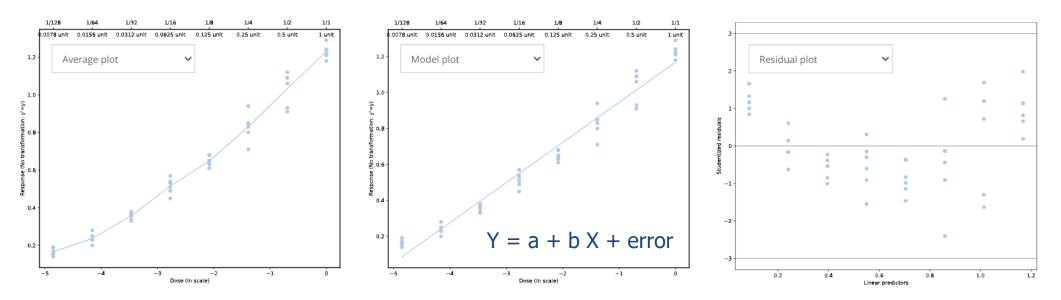


Equivalent Equivalent Inconclusive Non-equivalent

Use option 1 or option 2 (not both)

Model validity, ex 3

This assay is invalid... There is a lack of parallelism between the standard and one test preparation


Two products are similar if they act as dilution of the same substance, i.e. implies parallelism on log(dose)

Non-parallel lines may suggest problems with:

- Performance of the method, and/or
- Manufacturing process (product has changed!)

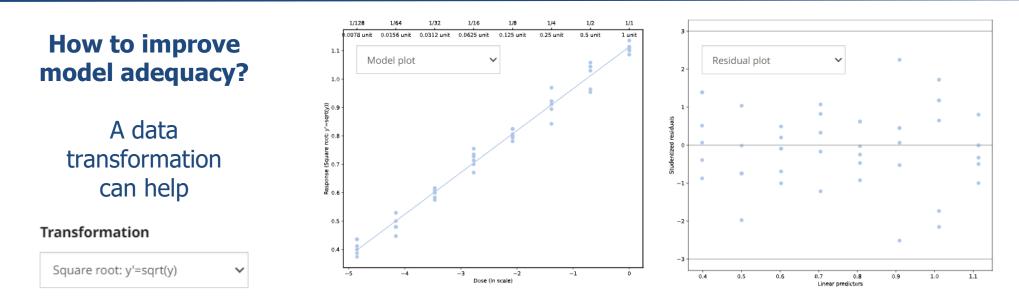
Model validity, ex 2.1

This linear regression model is invalid... I can see it from the graphical representations

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.000026	***
Quadratic curvature	1	< 0.000001	***
Lack of quadratic fit	5	0.840927	
Treatments	7	< 0.000001	***
Residual error	40		
Total	47		

Anova.

The slope is significant but...


Non-linearity has 3 ******* Invalidity is confirmed

A quadratic term (***) could be added: $Y = a + b X + c X^2 + error$ Would a quadratic model be enough? Yes, lack of quadratic fit is NS

Y: measurements; a: intercept; b: slope; X: log(dose); X²: [log(dose)]²; error: variability between replicates

Model validity, ex 2.2

This linear regression model is valid... I can see it from the graphical representations

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.711973	
Quadratic curvature	1	0.920982	
Lack of quadratic fit	5	0.595436	
Treatments	7	< 0.000001	***
Residual error	40		
Total	47		

Anova.

The slope is significant and... Non-linearity is NS Quadratic term is NS

Potency results, ex 1

Preparations

		Information	Pote	Potency	
Table	Preparation	ID	Potency	Value	
1	Standard 🗸	S	Assigned	700 IU/vial	
2	Sample 1 🗸	Т	Assumed 🗸	800 IU/vial	

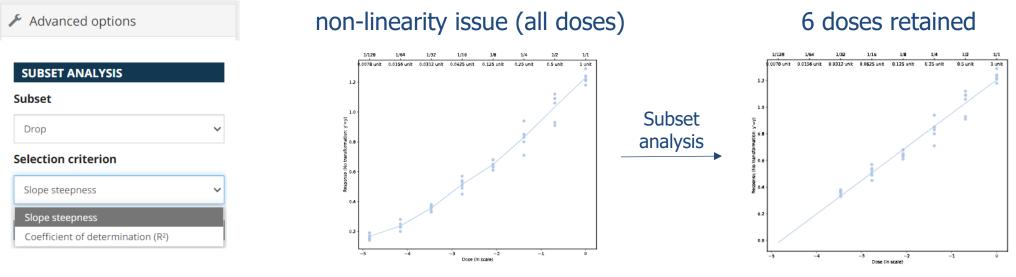
			Precise	enough?	On target?			
Potency estimates				_\				
	Potency		Relative To	estimate (%)	Relative To Ass	umed/Assigned (%)		
Preparati	ion	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	Rel. To Ass.	(LCL, UCL)
Sample 1:	: T	IU/vial	790.952	(726.139, 862.193)	100	(91.81, 109.01)	98.87	(90.77, 107.77)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Pharm. Eur.

Precision. Unless otherwise stated in the monograph, the confidence limits (P = 0.95) are not less than XX per cent and not more than YY per cent of the estimated potency.

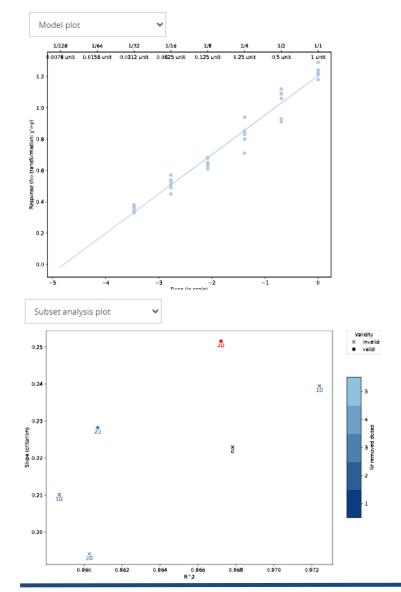
Recovery. The mean recovery must not be lower than XX per cent or above YY per cent.


The amount is not less than XX per cent and not greater than YY per cent of the intended content.

Subset analysis (SA)

A new analysis option for PLA models

- Goal: find a subset of doses for which non-linearity and non-parallelism contrasts are NS (and the regression is significant...)
- When is it available? significant non-linearity and/or non-parallelism contrasts (all doses)



Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.000026	***

Probability	Level of significance
< 0.000001	***
0.218655	

SA > Export to Excel

Label	Removed doses	Sequence	Probability Regression	Probability Non-linearity	Slope (criterion)	R^2	Validity	Convergence	Kept
0	0	[12345678]	9.6E-38	0.000	0.223	0.968	invalid	converged	
1D	1	1 Drop: [1234567-]	7.6E-30	0.001	0.210	0.959	invalid	converged	
1D	1	1 Drop: [-2345678]	2.1E-31	0.029	0.240	0.972	invalid	converged	
2D	2	2 Drop: [123456]	1.2E-25	0.004	0.194	0.960	invalid	converged	
2D	2	2 Drop: [-234567-]	5.3E-24	0.154	0.228	0.961	valid	converged	
2D	2	2 Drop: [345678]	5.3E-25	0.219	0.252	0.967	valid	converged	x

Label 0: invalid regression model (all doses)

Label 1D: remove 1 dose (keep consecutive doses) => regression models remain invalid Label 2D: remove 2 doses (keep consecutive doses) => 2 models are valid Final model? steepest slope or highest R² (user's decision)

Label 3D? The subset analysis stopped at 2D because a valid model was found

SA > several preparations

SUBSET ANALYSIS				
Subset				
Drop	~			
Shift				
Drop				
Shift & Drop				

Drop: remove the same dose number

Shift: remove a different dose number

In any case, keep contiguous doses

Case	Standard	Other prep.
1	[12345]	[12345]
	statistical analy	sis, stop/continue
	S	hift
2	[1234–]	[-2345]
3	[–2345]	[1234–]
	statistical analy	sis, stop/continue
6	[123—]	[-234-]
7	[–234–]	[123—]
8	[–234–]	[—345]
9	[—345]	[-234-]
	D	rop
4	[1234–]	[1234–]
5	[–2345]	[–2345]
	statistical analy	/sis, stop/continue
10	[123—]	[123—]
11	[–234–]	[-234-]
12	[—345]	[—345]

E.g. Shift & Drop Label 1 (1 dose removed) Cases 2, 3, 4, 5 will be tested If one case is valid, then stop Label 2 otherwise (cases 6 to 12)

Label k: a minimum of 3 doses

Further details in FAQ https://combistats.edqm.eu/faq/link/64/

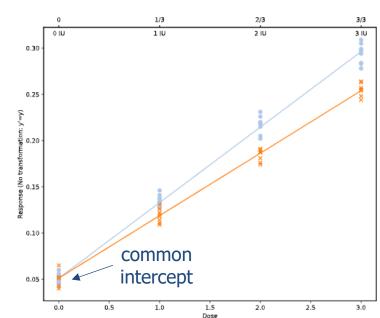
When to use the subset analysis

- Assay development?
- Routine testing?

. . .

Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model


Main differences with PLA

• x-axis: doses reported on an additive (arithmetic) scale

Table 1					
Preparation	Standard				
ID	S				
Potency	Assigned				
Potency value	3 IU/vo	lume			
Dose	0 1/3 2/3 3/3				
Rep.1	0.048	0.133	0.205	0.284	
Rep.2	0.056 0.146 0.218 0.305				

Doses > 0, 1, 2 and 3 IU

Zero-dose possible (on contrary to PLA)

Two products are similar if they act as dilution of the same substance, i.e. implies common intercepts when x-axis = doses

PLA	SRA
Common slope	 Common intercept
(parallelism)	(intersection)

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	2	< 0.000001	***
Zero-dose	1	0.307927	
Intersection	1	0.221299	
Non-linearity	2	0.620909	
Non-linearity Table 1	1	0.485277	
Non-linearity Table 2	1	0.496788	

Significant slopes? Yes (regression ***)

Common intercept ? Yes (intersection NS)

Lack of linearity? No (non-linearity NS)

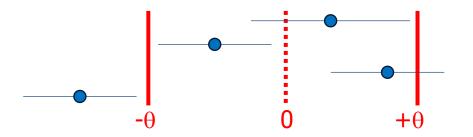
Comparison of intercepts

Option 1: difference testing approach
 = intersection contrast in Anova table

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	2	< 0.000001	***
Zero-dose	1	0.307927	
Intersection	1	0.221299	
Non-linearity	2	0.620909	
Non-linearity Table 1	1	0.485277	
Non-linearity Table 2	1	0.496788	
Treatments	6	< 0.000001	***
Residual error	57		

Tested against residual error, i.e. variance between replicates.

Low variance (high repeatability) => stat test likely to wrongly reject an assay where intercepts are quite close


Use option 1 or option 2 (not both)

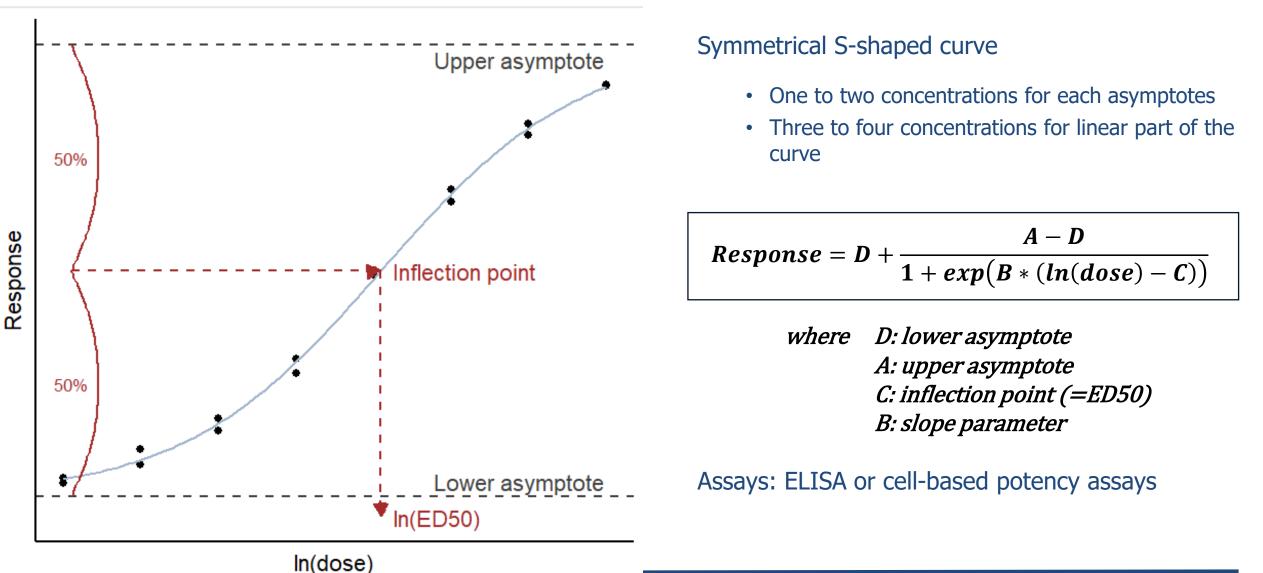
- **Option 2**: equivalence testing approach
 - = requires **predefined** equivalence margins $(\pm \Theta)$

Equivalence of intercepts

Preparation	Intercept	Difference with Standard				
Standard: S	0.0574167 (0.0503656, 0.0644677)	0.000000				
Sample 1: T	0.0500417 (0.0429906, 0.0570927)	-0.00737500 (-0.0173467, 0.00259671)				
ntercepts: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).						

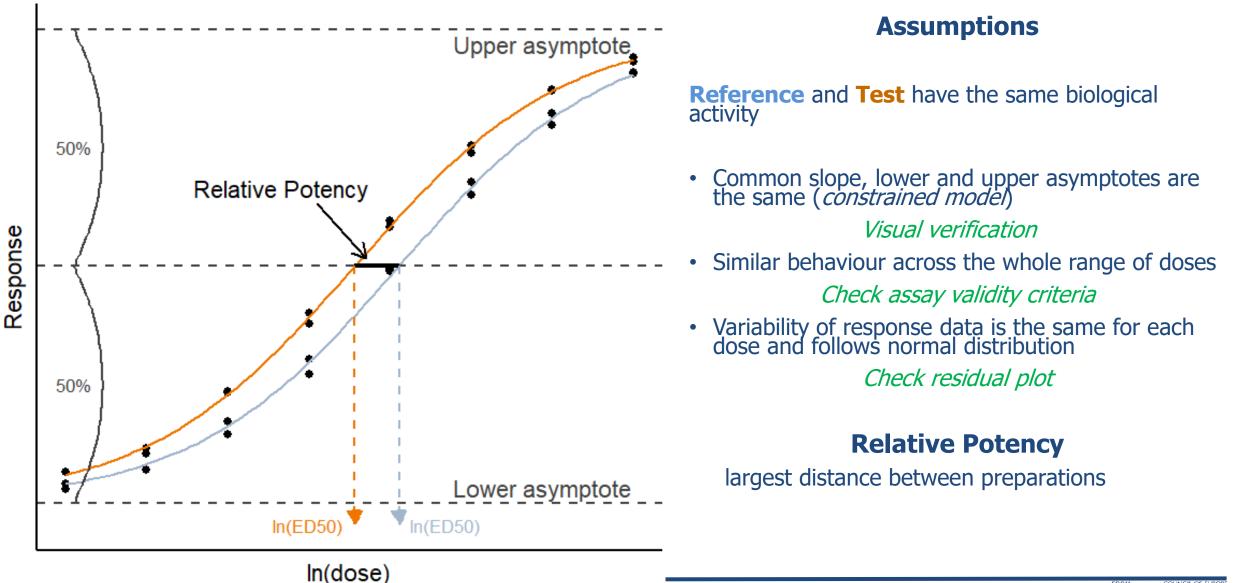
Differences of intercepts: confidence limits (in brackets) calculated for a 90% confidence level.

Equivalent Equivalent Inconclusive Non-equivalent

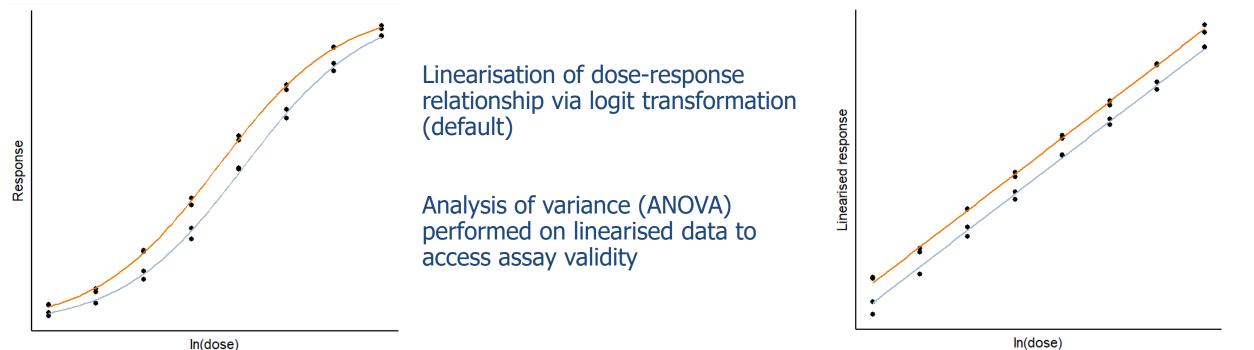


Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model



4PL – dose-response relationship



4PL - Potency

4PL – Assay validity criteria

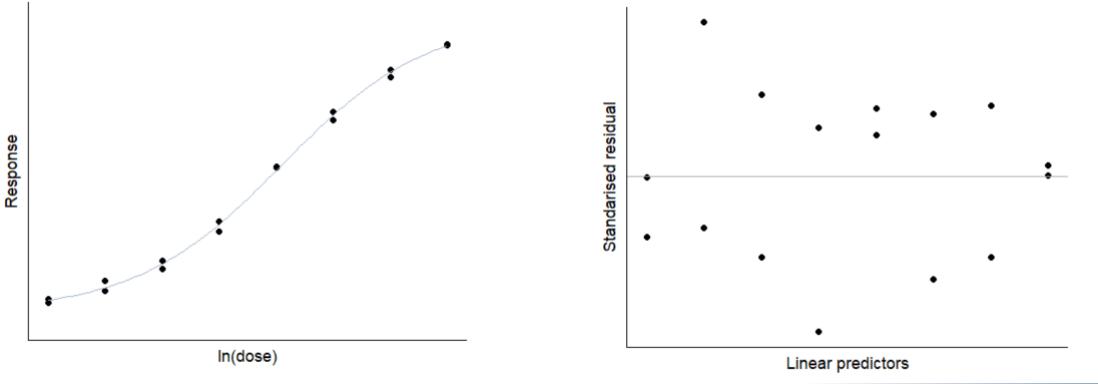
In(dose)

Validity criteria

- The p-value for **regression** is significant
- The p-value for **non-parallelism** is not significant
- The p-value for **non-linearity** is not significant

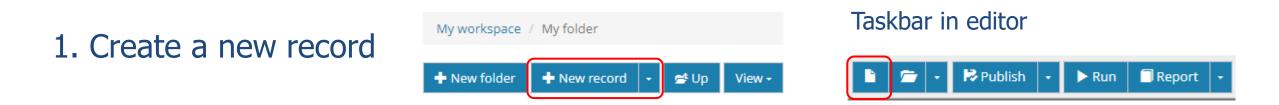
Source of variation	Probability	Level of significance
Preparations	0.328776	
Regression	< 0.000001	***
Non-parallelism	0.696804	
Non-linearity	0.937394	

4PL assumption: constant variability at each dose


Assumption

Variability of response data is the **same for each dose** and follows **normal distribution**

Verification


Similar variability over doses: inspect residual plot same dispersion of the points around the vertical line

Normal distribution not enough data to evaluate

4PL – create a record

2. Enter the record name, select destination folder and set-up

New record	Assay	Type of design	Response variable	Model
Assay	Multiple-dose 🗸	Completely randomised 🗸	Quantitative 🗸	Sigmoid curves (4-PL, In dose) 🗸
Name				
Assav1_4PL	Preparations	Max doses	Max replicates	
To folder	2	5	3	
🕀 🧰 David				
🕀 💼 Elena	Cancel Create			

4PL – data entry

Preparations

		Info	ormation	Pot	ency	Pre-di	lution
Table	Preparation	ID	Long label	Potency	Value	Reconstitution	Stock solution
1	Standard 🗸	S	standard	Assigned	100 IU/amp.	1 amp./mL	1 mL/10 mL
2	Sample 1 🗸	Т	test sample	Assumed \bullet	80 IU/vial	1 vial/0.5 mL	0.5 mL/5 mL
3	Sample 2 🗸	C1	Control 1	Assumed \bullet	25 IU/mL		
4	Sample 3 🗸	C2	Control 2	Assumed \bullet	120 IU/mL		

Observ.	c1	c2	c 3	c4	c5	сб	c7	c 8	c9	c10	c11	c12
r1												
r2	0.031	0.044	0.027	0.032	0.028	0.051	0.117	0.097	0.104	0.093	0.112	0.047
r3	0.046	2.912	2.579	2.130	1.651	1.073	0.585	0.463	0.266	0.228	0.176	0.031
r4	0.024	2.917	2.654	2.212	1.638	0.973	0.666	0.356	0.234	0.197	0.215	0.050
r5	0.030	3.017	2.801	2.401	1.918	1.364	0.861	0.497	0.340	0.242	0.178	0.035
r6	0.045	2.987	2.808	2.450	1.963	1.299	0.854	0.496	0.344	0.217	0.125	0.024
r7	0.051	2.105	2.074	2.162	1.948	2.037	1.974	1.925	2.017	2.106	1.938	0.038
r8												

Blank results

0.031	0.046	0.024	0.030	0.045	0.051	Med		SD	RSD%
0.047	0.031	0.050	0.035	0.024	0.038	0.03	ð	0.010	20.2

Tabl			EN		
Preparation	Standa	rd			EN
ID	S				EN
Long label	standa	rd			EN
Potency	Assigne	ed			EN
Potency value	100 IU/	/amp.			EN
Reconstitution	1 amp.	/mL			
Stock solution	1 mL/1	0 mL			
Dose	Rep.1	Rep.2	Mean	SD	RSD%
1/1	2.912	2.917	2.914	0.004	0.1
1/2	2.579	2.654	2.617	0.053	2.0
1/4	2.130	2.212	2.171	0.058	2.7
1/8	1.651	1.638	1.644	0.009	0.6
1/16	1.073	0.973	1.023	0.071	6.9
1/32	0.585	0.666	0.626	0.057	9.2
1/64	0.463	0.356	0.410	0.076	18.5
1/128	0.266	0.234	0.250	0.023	9.1
1/256	0.228	0.197	0.213	0.022	10.3
1/512	0.176	0.215	0.196	0.028	14.1
			_		

https://combistats.edqm.eu/help/

EN01 Information And Remarks EN02 Taskbar EN05 Preparations Table EN06 Rawdata Tables EN07 Show Design EN08 Table of Blank Results

31 © EDQM, Council of Europe, 2024. All rights reserved.

4PL – Wizard and Advanced options

Wizard

Assay	
Multiple-dose	~
Type of design	
Completely randomised	~
Response variable	
Quantitative	~
Model	
Sigmoid curves (4-PL, In dose)	~
Transformation	
No transformation: y'=y	~
Linearising transformation	
Logit	~
Variance	
Observed residuals	~

ransformation)
No transformation: y' 🗸	
No transformation: y'=y	6
Inverse: y'=1/y	
Logarithm: y'=log(y)	Li
Square root: y'=sqrt(y)	
Square: y'=y ²	ŀ
User-defined: y'=	
User-defined: y'=	
User-defined: y'=	
User-defined: y'=	r
User-defined: y'= 'ariance Observed residuals	r
Variance Observed residuals	r

Responses can be transformed prior applying linearising transformation

Linearising transformation
Logit 🗸
Probit
Logit
Angular
Rectangular
Gompit

If observed esiduals cannot be calculated or are not representative other options are available

Advanced options

FIXED PARAMETER

Addition

3.3

95

95

Multiplication

CONFIDENCE LEVELS

Slope / intercept

Potency / Effective dose / Inverse prediction

96

REGRESSION TYPE

Weighting

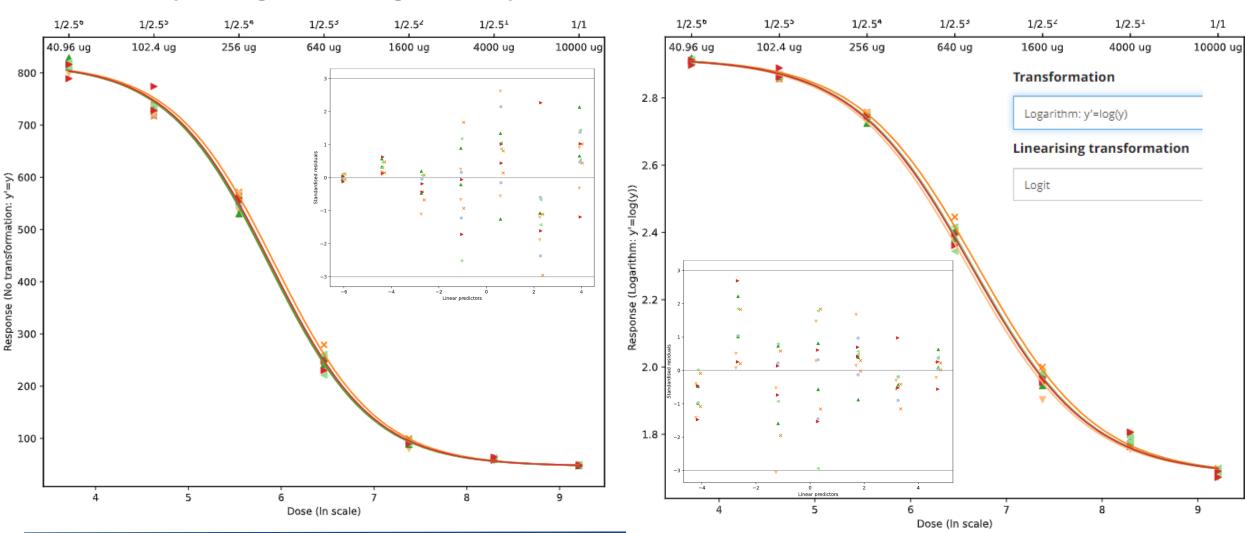
Unweighted regression Unweighted regression Weighted regression (1/m²)

User-defined (w=...)

3 model parameters can be fixed:

Addition = lower asymptote

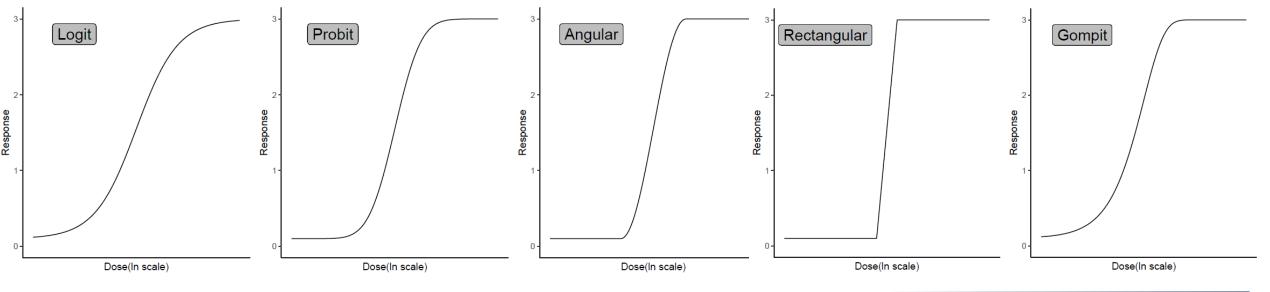
Slope/intercept


New record: 95% Imported from Desktop: 90%

Weighing regression may help to stabilise the residuals over the range of responses.

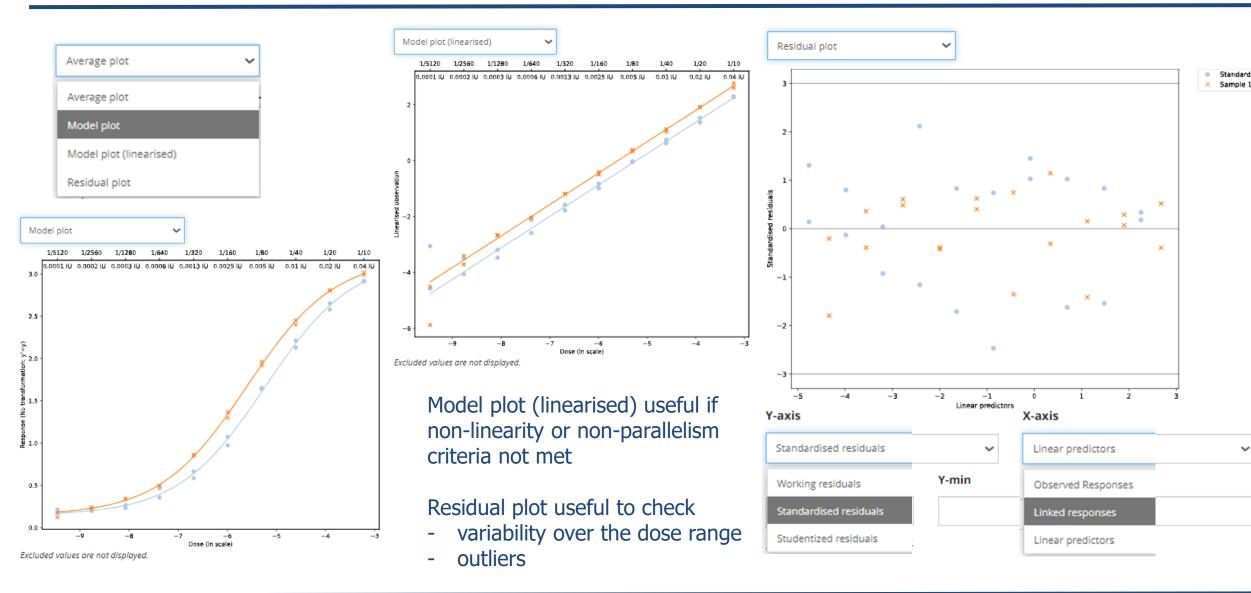
4PL example: log + logit transformation

Variability is higher at higher response



Linearising transformations

Linearising transformation


Logit	~
Probit	
Logit	
Angular	
Rectangular	
Gompit	

Logit: symmetrical with long tails (default for quantitative response)
Probit: symmetrical with short tails
Angular: symmetrical without tails
Rectangular: shaped like straight lines (not used anymore)
Gompit: asymmetrical with one long tail and one short tail

4PL – Graphical presentation

4PL - Summary statistics

Regression parameters

36

Global model: convergence reached

R² Standard: convergence reached

	Common Slope
Estimated value	1.12452
Lower conf. Limit	1.08725
Upper conf. Limit	1.16179

95% confidence level

Anova table

Normal

~

	weighted	unweighted
R ² All	0.991457	0.998112
R ² Standard	0.993511	0.998558

Other model parameters 0.145458 Lower asymptote 3.19599 Upper asymptote

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard	
Standard: S	1.12755 (1.07426, 1.18084)	0.000000	1.00000	
Sample 1: T	1.12162 (1.06949, 1.17375)	-0.00593102 (-0.0684964, 0.0566344)	0.994740 (0.940903, 1.05171)	

EN10 Regression Parameters

EN12 Equivalence of Slope

EN11 ANOVA Table

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options). Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability	Level of significance
Preparations	3	0.813672	0.271224	301.79	< 0.000001	***
Regression	1	9.43054	9.43054	3497.77	< 0.000001	***
Non-parallelism	1	6.55525e-05	6.55525e-05	0.0243133	0.876090	
Non-linearity	16	0.0127084	0.000794275	4.71353	0.997004	
Non-linearity Table 1	8	0.00764179	0.000955224	2.83433	0.944320	
Non-linearity Table 2	8	0.00506661	0.000633326	1.8792	0.984494	
Treatments	21	10.257	0.488428	3804.3	< 0.000001	***
Residual error	28	0.0754923	0.00269615			
Total	49	10.3325	0.210867			

© EDQM, Council of Europe, 2024. All rights reserved.

4PL - Potency and effective dose values

Potency estimates				Precision	Rec	Covery	
			Potency	Relative To	o Estimate (%)	Relative To Ass	umed/Assigned (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	Rel. To Ass.	(LCL, UCL)
Sample 1	IU/ml	0.583544	(0.556798, 0.611586)	100	(95.42, 104.81)	145.89	(139.20, 152.90)

EN15 Potency Estimates EN16 Effective Dose & Prediction

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

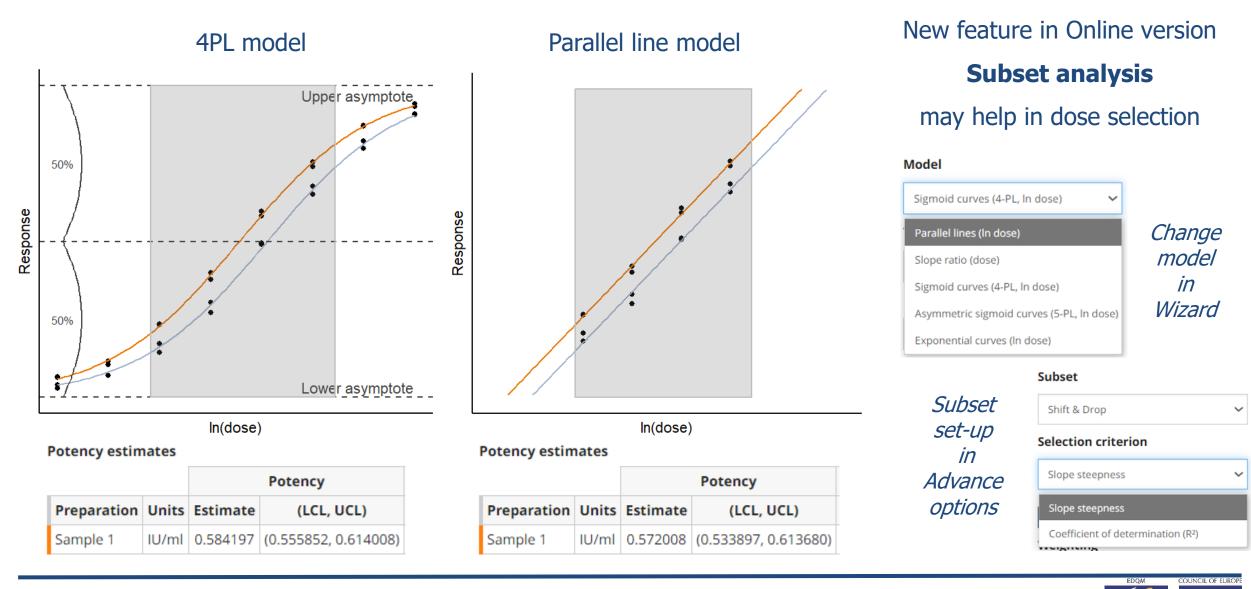
Advanced options

PREDICTED VALUES	
Effective dose	
50	%
Reported as	
Container / Effective Dose	~
Y values	
1.5;2	
You can specify up to 6 response values, separat semicolons.	ed by

Effective dose estimates

		Eff	ective Dose (ED)	Relative To Estimate (%)	
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Standard	IU/ED50	0.00539071	(0.00521456, 0.00557304)	100	(96.73, 103.38)
Sample 1	IU/ED50	0.00369516	(0.00357478, 0.00381967)	100	(96.74, 103.37)

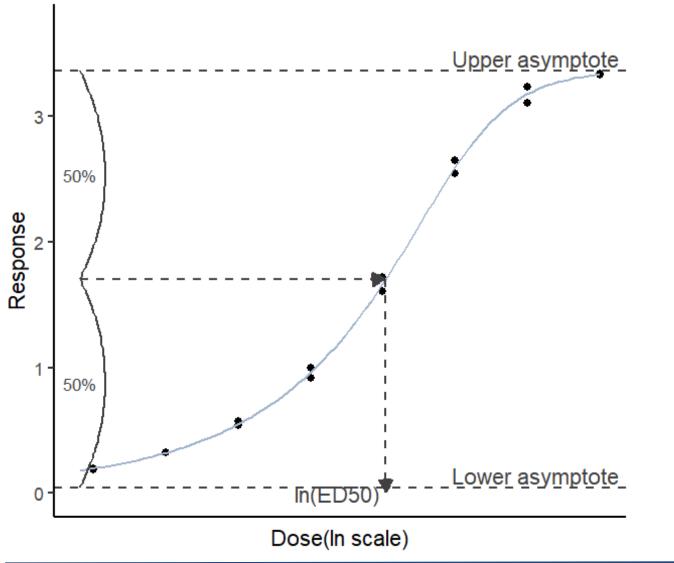
Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).


Inverse predictions

	y-value(s)					
		1.5	2			
nits	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)		
J	0.00441394	(0.00426822, 0.00456375)	0.00796270	(0.00769247, 0.00824648)		
J	0.00302561	(0.00292584, 0.00312811)	0.00545817	(0.00527405, 0.00565138)		
J		0.00441394	Inits Estimate (LCL, UCL) 0.00441394 (0.00426822, 0.00456375)	Inits Estimate (LCL, UCL) Estimate 0.00441394 (0.00426822, 0.00456375) 0.00796270		

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Parallel lines model as special case of 4PL


Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model

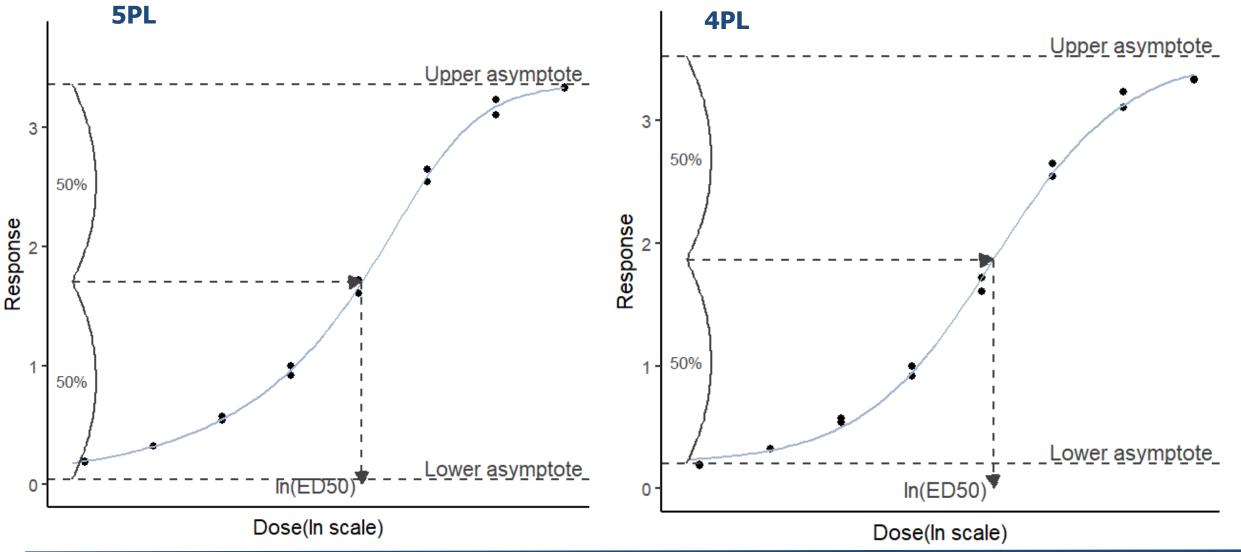
3-parameter exponential model

5PL – dose-response relationship

Asymmetrical S-shaped curve

- One to two concentrations for each asymptotes
- Three to four concentrations for middle part of the curve

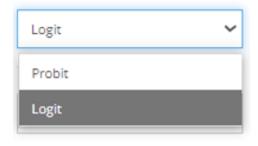
$$Response = D + \frac{A - D}{\left[1 + exp(B * (ln(dose) - C))\right]^{G}}$$


where D: upper asymptote
 A: lower asymptote
 C: location parameter(≠ ED50)
 B: Slope
 G: Asymmetry factor

Assays: ELISA or cell-based potency assays

5PL – 4PL comparison

Model	R ²	Lower asymptote	Upper asymptote	ED50
5PL	0.994	0.048	3.36	0.244 IU
4PL	0.988	0.207	3.52	0.261 IU


5PL – Creation and evaluation in CombiStats online

Model = Asymmetric sigmoid curves (In dose)

Assay	Assay	Type of design	Response variable	Model
Name	Multiple-dose 🗸	Completely randomised 🗸 🗸	Quantitative 🗸	Asymmetric sigmoid curves (5-PL, In dos 🗸
Assay1_5PL				
To folder	Preparations	Max doses	Max replicates	
	2	5	3	
🕀 🛑 David				
🕀 🛑 Elena				
👝 My folder	Cancel Create			

Linearising transformation

Analysis options are the same as for 4PL model except for linearising transformation

New record

Type

Parallel line model for routine testing

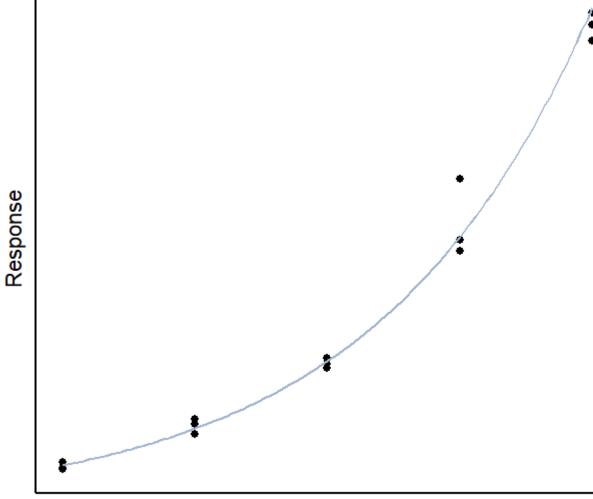
Middle section (section of the steepest slope) is often not linear for asymmetrical sigmoid models. An appropriate transformation to be applied for parallel line model.

Asymmetric sigmoid curves (5-PL, In dose) 5PL – middle section not linear **PL** - transformed response Parallel lines (In dose) Upper asymptote Transformation Change model ? No transformation: y'=y 3 and 0.5 No transformation: y'=y 50% transformation Inverse: y'=1/y In(Response) Response in Logarithm: y'=log(y) Wizard 0.0 Subset Subset Shift & Drop 50% set-up Selection criterion -0.5 in Advance Slope steepness Lower asymptote fn(ED50) 0 options Slope steepness Dose(In scale) Dose(In scale) Coefficient of determination (R²)

New feature **Subset analysis**

may help in dose selection Model

 \sim


Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model

• 3-parameter exponential model

3PM – dose-response relationship

In(dose)

Modelling exponential growth

No upper asymptote as in 4PL and 5PL

$$Response = D + A * exp(B * (ln(dose) - C))$$

whereD: additionA: multiplicationC: location parameterB: slope parameter

Hepatitis B vaccine (A3.29),

Yellow fever vaccine (A3.23), plaque forming units

3PM – modelling exponential growth

Usually, variability of response increases with higher response values and needs to be stabilised.

$$Response = D + A * exp(B * (ln(dose) - C))$$

<u>Case 1</u>: responses are based on counting of events in a Poisson or Poisson-like process

 \Rightarrow Weighted regression (1/m)

<u>Case 2</u>: responses are based on exponential distribution

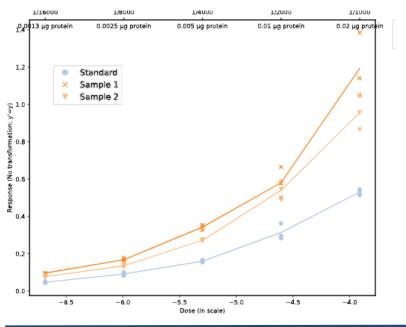
 \Rightarrow Weighted regression (1/m²)

If D=0 and A=1

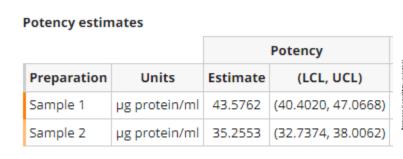
Response = exp(B * (ln(dose) - C))

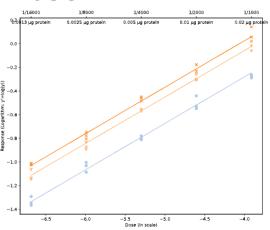
$$ln(Response) = ln(exp(B * (ln(dose) - C))))$$

= B * (ln(dose) - C)
= B * ln(dose) - B * C
= -B * C + B * ln(dose)
intercept slope

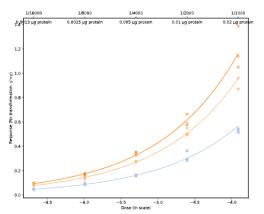

EDQM COUNCIL OF EUROPE * 755 * 1964 - 2024 CONSEL DE FELIROPE

Example: alternative to PL with log-transformation


Hepatitis B vaccine (A3.29)


Standard and two test preparations 5 doses

Average plot (no transformation)


PL model with log-transformation

3PL weighted regression (D=0, A=1, weight=1/m²)

Potency estimates					
			Potency		
Preparation	Units	Estimate	(LCL, UCL)		
Sample 1	µg protein/ml	43.5676	(40.4720, 46.9635)		
Sample 2	µg protein/ml	35.2206	(32.7673, 37.8948)		

3PM – Creation and evaluation in CombiStats online

Model = Exponential curves (In dose)

Туре	Assay	Type of design	Response variable	Model
Assay	Multiple-dose 🗸	Completely randomised 🗸 🗸	Quantitative 🗸	Exponential curves (In dose)
Name				
Assay1_3PM	Preparations	Max doses	Max replicates	
To folder	2	5	3	
🕀 🛑 David				
🕀 🛑 Elena				
📂 My folder	Cancel Create		Advanced op	otions

Wizard

FIXED PARA

Analysis options are similar to 4PL model without linearizing transformation choice

New record

Model		Slope
Exponential curves (In dose)	~	1.0
Transformation		Addition
No transformation: y'=y	~	0.0
Variance		Multiplication
Observed residuals	~	100.0

TER	REGRESSION TYPE
	Weighting
	Unweighted regression 🗸
	Unweighted regression
	Weighted regression (1/m ²)
	Poisson regression (1/m)
	User-defined (w=)

49 © EDQM, Council of Europe, 2024. All rights reserved.

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter LinkedIn: https://www.linkedin.com/company/edqm/ X: @edqm_news Facebook: @EDQMCouncilofEurope

