THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)

EDQM

1964 - 2024

COUNCIL OF EUROPE

CONSEIL DE L'EUROPE

CombiStats online Training module 4

Part 1: single-dose assays

Part 2: combination of assay results

2 © EDQM, Council of Europe, 2024. All rights reserved.

Content

- Data entry
- Statistical analysis
- Examples
- Dose selection

Data entry – quantitative data

E.g. immunogenicity test in mice

Preparations

		Information	Pote	ency	Pre-d	lilution
Table	Preparation	ID	Potency	Value	Diluted	Injected
1	Standard 🗸	Reference	Assigned	1 unit/dose	1 dose/2 ml	0.5 ml/mouse
2	Sample 1 🝷	Batch	Assumed -	1 unit/dose	1 dose/ml	0.5 ml/mouse

Tabl	e 1 🚦	Tab	le 2
Preparation	Standard	Preparation	Sample 1
ID	Reference	ID	Batch
Potency Assigned		Potency	Assumed
Potency value 1 unit/dose Potency		Potency value	1 unit/dose
Diluted	1 dose/2 ml	Diluted	1 dose/ml
Injected	0.5 ml/mouse	Injected	0.5 ml/mouse
Dose	1/1	Dose	1/1
Rep.1	0.867	Rep.1	1.068
Rep.2	0.568	Rep.2	0.845
Rep.3	0.674	Rep.3	0.964
Rep.4	0.550	Rep.4	1.274
Rep.5	0.598	Rep.5	0.686
Rep.6	0.732	Rep.6	1,160

or

Raw data

Tabl	e 1	:
Preparation	Standa	rd
ID	Reference	
Potency	Assigned	
Potency value	1 unit/dose	
Diluted	1 dose/2 ml	
Injected	0.5 ml/	mouse
Dose	1/1	1/1
Rep.1	0.867	0.550
Rep.2	0.568	0.598
Rep.3	0.674	0.732

•	Table 2		:
Preparation	Sample	e 1	
ID	Batch		
Potency	Assum	ed	
Potency value	1 unit/o	dose	
Diluted	1 dose	/ml	
Injected	0.5 ml/	mouse	
Dose	1/1	1/1	1/1
Rep.1	1.068	1.274	0.964
Rep.2	0.845	0.686	1.160

Unique dose repeated in different columns (or rows)

Data entry – quantal data

E.g. in vivo test

Preparations

		Information	Pote	ncy
Table	Preparation	ID	Potency	Value
1	Standard 🗸	Reference	Assigned	8 IU/ml
2	Sample 1 🝷	Potent lot	Assumed -	2.5 IU/ml
3	Sample 2 🗸	Sub-potent lot	Assumed +	2.5 IU/ml

Aggregated data (r/n)

Raw data

Table	1 :
Preparation	Standard
ID	Reference
Potency	Assigned
Potency value	8 IU/ml
Dose	Rep.1
1/300	20/28

Table	2
Preparation	Sample 1
ID	Potent lot
Potency	Assumed
Potency value	2.5 IU/ml
Dose	Rep.1
1/30	10/28

Tab	le 3
Preparation	Sample 2
ID	Sub-potent lot
Potency	Assumed
Potency value	2.5 IU/ml
Dose	Rep.1
1/30	15/28

Individual data

Tab	ole 1	:
Preparation	Standa	rd
ID	Refere	nce
Potency	Assign	ed
Potency value	8 IU/ml	
Dose	1/300	1/300
Rep.1	1	1
Rep.2	1	0
Rep.3	1	1
Rep.4	0	1
Rep.5	1	0
Rep.6	1	1
Rep.7	1	1
Rep.8	0	0
Rep.9	0	1
Rep.10	1	1
Rep.11	1	1
Rep.12	0	1
Rep.13	1	1
Rep.14	1	0
r/n	10/14	10/14

Tabl	e 2	1
reparation	Sample	e 1
D	Potent	lot
otency	Assum	ed
otency value	2.5 IU/i	ml
Dose	1/30	1/30
Rep.1	1	0
Rep.2	0	1
Rep.3	1	0
Rep.4	0	0
Rep.5	0	1
Rep.6	1	0
Rep.7	0	0
Rep.8	0	0
Rep.9	0	0
Rep.10	0	1
Rep.11	1	0
Rep.12	1	0
Rep.13	0	1
Rep.14	1	0
r/n	6/14	4/14

Tab	le 3	:
Preparation	Sample	2
ID	Sub-po	tent lot
Potency	Assumed	
Potency value	2.5 IU/i	nl
Dose	1/30	1/30
Rep.1	0	1
Rep.2	1	0
Rep.3	1	1
Rep.4	0	0
Rep.5	1	1
Rep.6	0	0
Rep.7	1	1
Rep.8	1	1
Rep.9	1	0
Rep.10	0	0
Rep.11	0	1
Rep.12	1	1
Rep.13	1	0
Rep.14	0	0
r/n	8/14	7/14

"Show design" option

Quantitative data

Assay layout

Design	c1	c2	c3	Observ.	c1	c2
r1	1 1 1	2 1 5	1 1 5	r1	0.867	0.686
r2	2 1 3	1 1 3	1 1 2	r2	0.964	0.674
r3	2 1 6	2 1 1	2 1 4	r3	1.160	1.068
r4	2 1 2	1 1 4	1 1 6	r4	0.845	0.550

Blank results

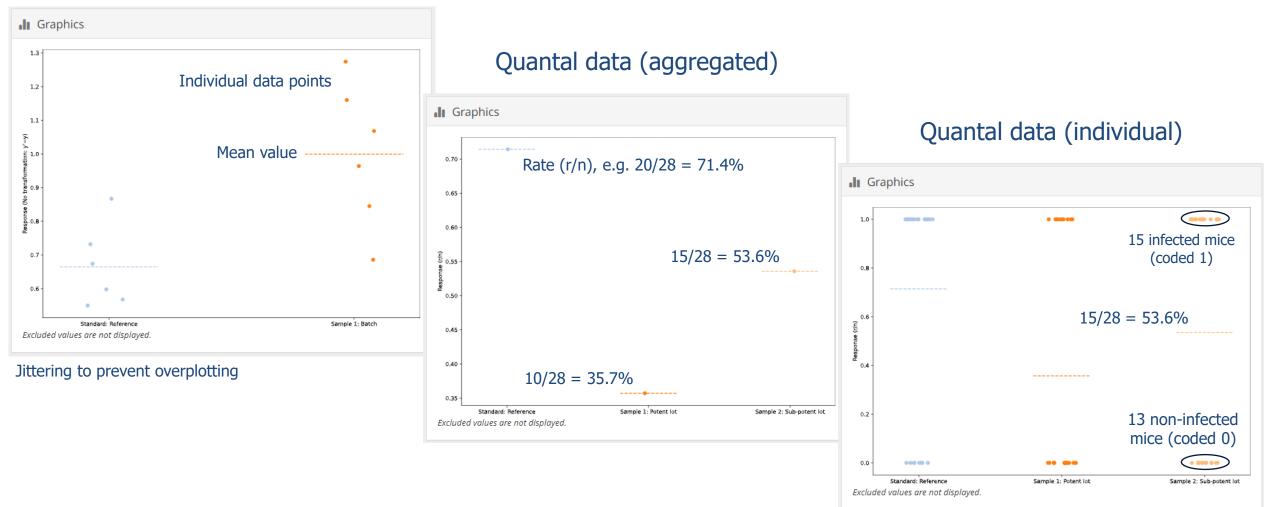
0.002 0.007 0.005 0.004 0.007	Mean	30	RSD%
	0.005	0.002	121

Quantal data (e.g. individual data)

Assay layout

Design	c1	c2	c 3	c4	c5	сб
r1	1 1 1	2 1 1	3 1 1	1 1 15	2 1 15	3 1 15
r2	1 1 2	2 1 2	3 1 2	1 1 16	2 1 16	3 1 16
r3	1 1 3	2 1 3	3 1 3	1 1 17	2 1 17	3 1 17
r4	1 1 4	2 1 4	3 1 4	1 1 18	2 1 18	3 1 18
r5	1 1 5	2 1 5	3 1 5	1 1 19	2 1 19	3 1 19
r6	1 1 6	2 1 6	3 1 6	1 1 20	2 1 20	3 1 20
r7	1 1 7	2 1 7	3 1 7	1 1 21	2 1 21	3 1 21
r8	1 1 8	2 1 8	3 1 8	1 1 22	2 1 22	3 1 22
r9	1 1 9	2 1 9	3 1 9	1 1 23	2 1 23	3 1 23
r10	1 1 10	2 1 10	3 1 10	1 1 24	2 1 24	3 1 24
r11	1 1 11	2 1 11	3 1 11	1 1 25	2 1 25	3 1 25
r12	1 1 12	2 1 12	3 1 12	1 1 26	2 1 26	3 1 26
r13	1 1 13	2 1 13	3 1 13	1 1 27	2 1 27	3 1 27
r14	1 1 14	2 1 14	3 1 14	1 1 28	2 1 28	3 1 28

Observ.	c1	c2	c3	c4	c5	c6
r1	1	1	0	1	0	1
r2	1	0	1	0	1	0
r3	1	1	1	1	0	1
r4	0	0	0	1	0	0
r5	1	0	1	0	1	1
r6	1	1	0	1	0	0
r7	1	0	1	1	0	1
r8	0	0	1	0	0	1
r9	0	0	1	1	0	0
r10	1	0	0	1	1	0
r11	1	1	0	1	0	1
r12	0	1	1	1	0	1
r13	1	0	1	1	1	0
r14	1	1	0	0	0	0


Content

- Data entry
- Statistical analysis
- Examples
- Dose selection

Descriptive plot

Quantitative data

EDQM COUNCIL OF EUROPE

Statistical test – quantitative data

A test comparing the location of the data of the preparations

Location = means → t-test (2 preps), multiple comparisons test (> 2 preps)

Assumption: data should be normally distributed (Gauss distributions)

May not be the case for some bioassays...

E.g. immunogenicity test in mice (antibody units) – normal distributions?

CombiStats approach: a test applicable to any distribution (distribution-free statistics); data from a completely randomised design

→ Wilcoxon-Mann-Whitney test

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1 IU/dose
Dose	1 dose
Rep.1	4.4
Rep.2	12.2
Rep.3	8.5
Rep.4	8.5
Rep.5	1.8
Rep.6	7.2
Rep.7	7.2
Rep.8	8.5
Rep.9	3.1
Rep.10	10.2

Table	2
Preparation	Sample 1
ID	Т
Potency	Assumed
Potency value	? IU/dose
Dose	1 dose
Rep.1	10.2
Rep.2	16.9
Rep.3	11.7
Rep.4	10.2
Rep.5	10.2
Rep.6	10.2
Rep.7	8.5
Rep.8	0.1
Rep.9	0.1
Rep.10	8.5

Compares the distributions of results from two preparations

Principle: the values, listed in ascending order, will alternate between the 2 preparations if their underlying distributions are equal

Tabl	e 1	
Preparation	Standard	P
ID	Reference	I
Potency	Assigned	P
Potency value	1 unit/dose	P
Diluted	1 dose/2 ml	C
Injected	0.5 ml/mouse	l
Dose	1/1	
Rep.1	0.867	
Rep.2	0.568	
Rep.3	0.674	
Rep.4	0.550	
Rep.5	0.598	
Rep.6	0.732	

Tabl	e 2 🚦
Preparation	Sample 1
ID	Batch
Potency	Assumed
Potency value	1 unit/dose
Diluted	1 dose/ml
Injected	0.5 ml/mouse
Dose	1/1
Rep.1	1.068
Rep.2	0.845
Rep.3	0.964
Rep.4	1.274
Rep.5	0.686
Rep.6	1.160

Data in ascending order. Do they alternate between the 2 prep? Not really... (have a look at the descriptive plot too)

Observ.	c1	c2	c3	c4	c5	сб	c7	c 8	c9	c10	c11	c12
r1	0.550	0.568	0.598	0.674	0.686	0.732	0.845	0.867	0.964	1.068	1.160	1.274

Rank	Std data in position
approach	(rank) 1, 2, 3, 4, 6 and

positionSample data in position4, 6 and 8(rank) 5, 7, 9, 10, 11 and 12

Limit test

		Limit tested				
Preparation	Units	Value	Probability	Level of significance		
Sample 1: Batch	unit/dose	0.5	0.007576	**		

p-value \leq 0.05 (usual significance threshold) \rightarrow the 2 distributions of results differ significantly

Is useful in a case of skewed data: the **rank approach** relaxes the effects of extreme values

Table	1 :	Table	2
Preparation	Standard	Preparation	Sample 1
ID	S	ID	т
Potency	Assigned	Potency	Assigned
Potency value	160 IU/vial	Potency value	80 IU/dose
Dose	1 IU	Dose	2.5 IU
Rep.1	0	Rep.1	0.042
Rep.2	0	Rep.2	0.8
Rep.3		Rep.3	0.1
Rep.4	0.1	Rep.4	0.283
Rep.5	0.2	Rep.5	0.141
Rep.6	0	Rep.6	0.238
Rep.7		Rep.7	0.283
Rep.8	0.168	Rep.8	0.168
Rep.9	0.084	Rep.9	0
Rep.10	0.059	Rep.10	0
Rep.11	0	Rep.11	0.168
Rep.12	0	Rep.12	0.084

Vero cell assay: values < LOD set to 0

Has many advantages over parametric methods (e.g. t-test)

- No assumptions on normality nor homoscedasticity have to be made
- Applicable to various types of responses:
 - Quantal data (yes/no, e.g. lethal challenge)
 - Scores (e.g. intradermal challenge)
 - Quantitative data (e.g. ELISA absorbances)
 - Mixed data (e.g. quantitative data with a category "below detection limit")
- Not sensitive to outliers
- No transformation of responses is necessary
- In many practical cases, it is statistically more efficient than the t-test

However, for a single-dose assay to be valid, the condition of similarity of dose-response curves must be fulfilled

Limit tested

Limit test

		Limit tested					
Preparation	Units	Value	Level of significance				
Sample 1: Batch	unit/dose	0.5	0.007576	**			

p-value ≤ 0.05 (usual significance threshold) → the 2 distributions of results differ significantly

Tabl	le 1 🚦	Tab	le 2 :
Preparation	Standard	Preparation	Sample 1
ID	Reference	ID	Batch
Potency	Assigned	Potency	Assumed
Potency value	1 unit/dose	Potency value	1 unit/dose
Diluted	1 dose/2 ml	Diluted	1 dose/ml
Injected	0.5 ml/mouse	Injected	0.5 ml/mouse
Dose	1/1	Dose	1/1

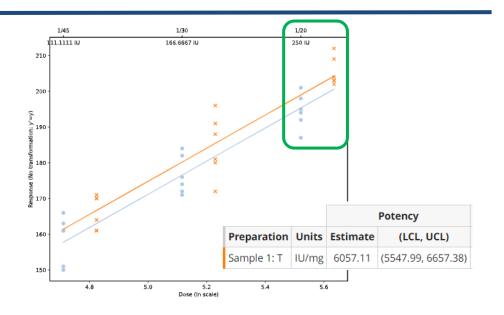
 $\begin{aligned} \text{Limit value} &= \frac{1 \text{ unit}}{1 \text{ dose}} \times \frac{1 \text{ dose}}{2 \text{ mL}} \times \frac{0.5 \text{ mL}}{1 \text{ mouse}} \times \frac{1}{1} \times \end{bmatrix} & \begin{array}{c} \text{From} \\ \text{Table 1} \\ \\ \frac{1 \text{ dose}}{1 \text{ unit}} \times \frac{1 \text{ mL}}{1 \text{ dose}} \times \frac{1 \text{ mouse}}{0.5 \text{ mL}} \times \frac{1}{1} \end{bmatrix} & \begin{array}{c} \text{From} \\ \text{Table 2} \\ \\ \text{Table 2} \end{aligned}$ $\begin{aligned} \text{Limit value} &= 0.5 \end{aligned}$

More precisely, **Sample 1 has a potency** significantly higher than 0.5 unit/dose

See the note for guidance, page 5 for further examples

Content

- Data entry
- Statistical analysis
- Examples
- Dose selection


Example 1

Multiple-dose assay

The signal increases with the dose (positive slope)

Table 1				
Preparation	Standa	rd		
ID	S			
Potency	Assigne	ed		
Potency value	5000 IU	J/mg		
Dose	1/45	1/30	1/20	
Rep.1	161	171	187	
Rep.2	150	172	192	
Rep.3	161	174	195	
Rep.4	163	184	194	
Rep.5	151	176	201	
Rep.6	166	182	198	

•	:			
Preparation	Sample	e 1		
ID	Т			
Potency	Assum	ed		
Potency value	5600 IU/mg			
Dose	1/45	1/30	1/20	
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171 196 203			

Single-dose assay

positive slope

•	Table 1				
Preparation	Standa	rd			
ID	S				
Potency	Assigne	ed			
Potency value	e 5000 IU/mg				
Dose	1/45	1/30	1/20		
Rep.1	161	171	187		
Rep.2	150	172	192		
Rep.3	161	174	195		
Rep.4	163	184	194		
Rep.5	151	176	201		
Rep.6	166	182	198		

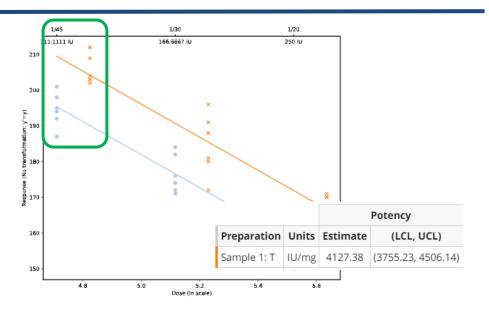
Table 2				
Preparation	Sample	e 1		
ID	Т			
Potency	Assumed			
Potency value	e 5600 IU/mg			
Dose	1/45	1/30	1/20	
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171	196	203	

The potency of Sample 1 is significantly **higher** (p=0.001) than 5000 IU/mg

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: T	IU/mg	5000	0.001082	**

14 © EDQM, Council of Europe, 2024. All rights reserved.


Example 2

Multiple-dose assay

The signal decreases with the dose (negative slope)

Table 1			
Preparation	Standa	rd	
ID	S		
Potency	Assigne	ed	
Potency value	5000 IL	J/mg	
Dose	1/20	1/30	1/45
Rep.1	161	171	187
Rep.2	150	172	192
Rep.3	161	174	195
Rep.4	163	184	194
Rep.5	151	176	201
Rep.6	166	182	198

-	Table 2				
Preparation	paration Sample 1				
ID	Т				
Potency	Assum	ed			
Potency value	5600 IU/mg				
Dose	1/20	1/30	1/45		
Rep.1	170	188	204		
Rep.2	161	180	202		
Rep.3	161	172	203		
Rep.4	170	181	209		
Rep.5	164	191	212		
Rep.6	171	196	203		

Single-dose assay

negative slope

•	Table 1				
Preparation	Standa	rd			
ID	S				
Potency	Assigne	ed			
Potency value	5000 IU/mg				
Dose	1/20	1/30	1/45		
Rep.1	161	171	187		
Rep.2	150	172	192		
Rep.3	161	174	195		
Rep.4	163	184	194		
Rep.5	151	176	201		
Rep.6	166	182	198		

•	Table 2				
Preparation	Sample	e 1			
ID	Т				
Potency	Assum	ed			
Potency value	ncy value 5600 IU/mg				
Dose	1/20	1/30	1/45		
Rep.1	170	188	204		
Rep.2	161	180	202		
Rep.3	161	172	203		
Rep.4	170	181	209		
Rep.5	164	191	212		
Rep.6	171	196	203		

The potency of Sample 1 is significantly **lower** (p=0.001) than 5000 IU/mg

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: T	IU/mg	5000	0.001082	**

Limit test interpretation

It is only possible to determine if the potency of the test preparation is lower or higher than the limit value if the signal-dose relationship is known

	Signal-dose relationship			
Response of the test preparation	Results decrease when dose increases (negative slope)	Results increase with the dose (positive slope)		
Lower than that of the standard	The potency of the test preparation is significantly higher than the limit value	The potency of the test preparation is significantly lower than the limit value		
Greater than that of the standard	The potency of the test preparation is significantly lower than the limit value	The potency of the test preparation is significantly higher than the limit value		

E.g. Immunodiffusion test:

Limit value = 16700 IU/vial (p-value \leq 0.001)

Results of the test preparation are higher than those of the standard.

→ The test preparation contains significantly [more]/[less] (please choose) than 16700 IU/vial

Example 3

The Wilcoxon-Mann-Whitney test also applies to **quantal data**

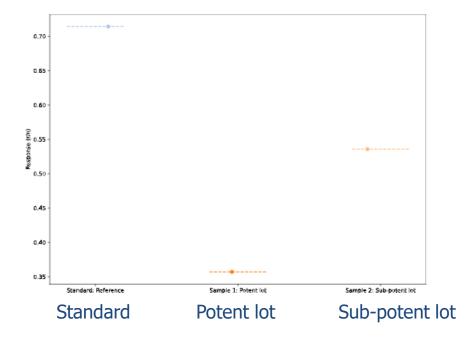

(the test corresponds to the Fisher's Exact test)

Table	1 :	Table	2
Preparation	Standard	Preparation	Sample 1
ID	Reference	ID	Potent lot
Potency	Assigned	Potency	Assumed
Potency value	8 IU/ml	Potency value	2.5 IU/ml
Dose	1/300	Dose	1/30
Rep.1	20/28	Rep.1	10/28

Table 3		
Preparation	Sample 2	
ID	Sub-potent lot	
Potency	Assumed	
Potency value	2.5 IU/ml	
Dose	1/30	
Rep.1	15/28	

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: Potent lot	IU/ml	0.8	0.007562	**
Sample 2: Sub-potent lot	IU/ml	0.8	0.134734	non-significant

For which interpretation?

Example 4

The calculation time of the **exact p-value** increases significantly with the number of data

Tab	le 1	:	-
Preparation	Standa	rd	Prepara
ID	S		ID
Potency	Assigne	ed	Potenc
Potency value	1 IU/do	se	Potenc
Dose	1 dose	1 dose	Do
Rep.1	10.1	4.4	Re
Rep.2	8.5	12.2	Re
Rep.3	5.0	8.5	Re
Rep.4	6.0	8.5	Re
Rep.5	7.1	1.8	Re
Rep.6	14.3	7.2	Re
Rep.7	1.3	7.2	Re
Rep.8	8.5	8.5	Re
Rep.9	8.5	3.1	Re
Rep.10	14.3	10.2	Rep

Table 2				
eparation	Sample 1			
	Т			
tency	Assume	ed		
tency value	? IU/dos	se		
Dose	1 dose	1 dose		
Rep.1	0.1	10.2		
Rep.2	17.0	16.9		
Rep.3	12.0	11.7		
Rep.4	10.1 10.2			
Rep.5	3.0 10.2			
Rep.6	24.0	10.2		
Rep.7	20.2	8.4		
Rep.8	14.3	0.1		
Rep.9	8.5	0.1		
Rep.10	12.0	8.4		

Run analysis
Calculation of Exact Wilcoxon-Mann-Whitney Test Press 'Stop calculation' to stop the exact calculation and display approximate p-value.
Calculation of Exact Wilcoxon-Mann-Whitney Test
Stop calculation
Cancel

An approximated p-value based on the normal approximation with correction for ties is reported

Limit test

		Limit tested			
Preparation	Units	Value Probability Level of significan			
Sample 1: T	IU/dose	1	0.043519	*	

Exact p-value = 0.043

Example 5 (1)

From multiple-dose assay...

Lethal challenge (n=48 mice/lot)

Table 1		
Preparation	Standard	
ID	S	
Potency	Assigned	
Potency value	160 IU/vial	
Dose	Rep.1	
15.625 IU	11/11	
6.25 IU	12/12	
2.5 IU	8/12	
1 IU	4/10	

Table	2
Preparation	Sample 1
ID	Т
Potency	Assigned
Potency value	80 IU/dose
Dose	Rep.1
15.625 IU	12/12
6.25 IU	11/12
2.5 IU	9/11
1 IU	5/12

to

Potency estimate & UCL not strictly needed and come at a high cost (48 mice/lot)

Is a single dose assay a better option?

single-dose assay...

Table	1	
Preparation	Standard	
ID	S	
Potency	Assigned	
Potency value	160 IU/vial	
Dose	Rep.1	
15.625 IU	11/11	
6.25 IU	12/12	
2.5 IU	8/12	[
1 IU	4/10	

	Table	2 :
	Preparation	Sample 1
	ID	Т
	Potency	Assigned
	Potency value	80 IU/dose
	Dose	Rep.1
	15.625 IU	12/12
	6.25 IU	11/12
	2.5 IU	9/11
]	1 IU	5/12

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: T	IU/dose	32	0.063467	non-significant

If the lethal challenge assay was restricted to one dose, more than 12 mice/lot would be needed, but not as much as 48...

1 IU		1 IU	5/12						
Potency est	Potency estimates								
			Potency						
Preparatio	n Units	Estimate	(LCL,	UCL)					
Sample 1: T	IU/dose	85.6132	(41,3355,	175.150)					

Ph. Eur. A lower confidence limit monograph ≥ 32 IU/dose is required

Example 5 (2)

Expected rates: Standard 1 IU: 40% ; Vaccine lot 2.5 IU: 75%

Let's run the single-dose assay with n = 24 mice/lot

	Std	Lot
n=24	π = 40%	π = 75%
r	P(R = r)	P(R≤r)
5	3%	0%
6	6%	0%
7	10%	0%
8	14%	0%
9	16%	0%
10	16%	0%
11	14%	0%
12	10%	1%
13	6%	1%
14	3%	3%
15	1%	7%
16	1%	11%
17	0%	16%
18	0%	19%
19	0%	18%
20	0%	13%
21	0 %	8%
22	0 %	3%

The most probable observed rates (Binomial dist.) are: Standard: 10/24 (42%) and Vaccine lot: 18/24 (75%)

		Limit tested				
Preparation	Units	Value	Probability	Level of significance		
Sample 1: T	IU/dose	32	0.019605	*		

40 rates with a higher probabilities of occurrence

1	10/24	18/24	9	11/24	19/24	17	9/24	16/24	25	8/24	16/24	33	7/24	16/24
2	9/24	18/24	10	8/24	19/24	18	11/24	20/24	26	7/24	17/24	34	10/24	15/24
3	10/24	19/24	11	11/24	17/24	19	8/24	20/24	27	12/24	20/24	35	9/24	15/24
4	9/24	19/24	12	8/24	17/24	20	7/24	18/24	28	7/24	20/24	36	13/24	19/24
5	10/24	17/24	13	10/24	20/24	21	12/24	19/24	29	10/24	21/24	37	6/24	18/24
6	9/24	17/24	14	9/24	20/24	22	7/24	19/24	30	9/24	21/24	38	11/24	21/24
7	11/24	18/24	15	12/24	18/24	23	12/24	17/24	31	13/24	18/24	39	8/24	21/24
8	8/24	18/24	16	10/24	16/24	24	11/24	16/24	32	12/24	16/24	40	6/24	19/24

Proba. of occurrence (10/24: 18/24 as ref.)

× 1	, ,			
-	0.80	0.61	0.51	0.36
1.00	0.80	0.60	0.51	0.36
0.95	0.73	0.60	0.44	0.36
0.95	0.72	0.60	0.42	0.36
0.86	0.71	0.58	0.41	0.35
0.86	0.71	0.56	0.41	0.34
0.85	0.61	0.53	0.38	0.34
0.84	0.61	0.52	0.37	0.33

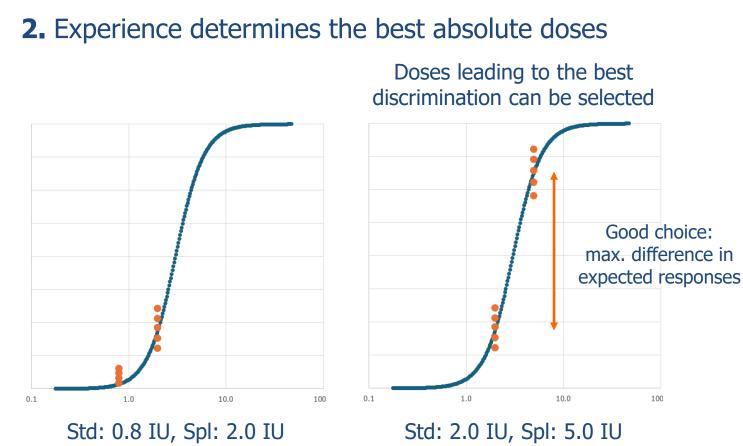
p-values are \leq 0.05 in 30/40 (75%) cases, \leq 0.10 in 35/40 (88%) cases

0.020	0.018	0.041	0.021	0.010
0.009	0.002	0.007	0.004	0.124
0.009	0.071	0.001	0.015	0.074
0.004	0.010	0.002	0.000	0.062
0.040	0.003	0.034	0.001	0.001
0.021	0.001	0.001	0.000	0.002
0.038	0.068	0.119	0.114	0.000
0.004	0.073	0.122	0.190	0.000

Content

- Data entry
- Statistical analysis
- Examples
- Dose selection

Dose selection, limit test


1. Official requirements determine the best ratio between doses

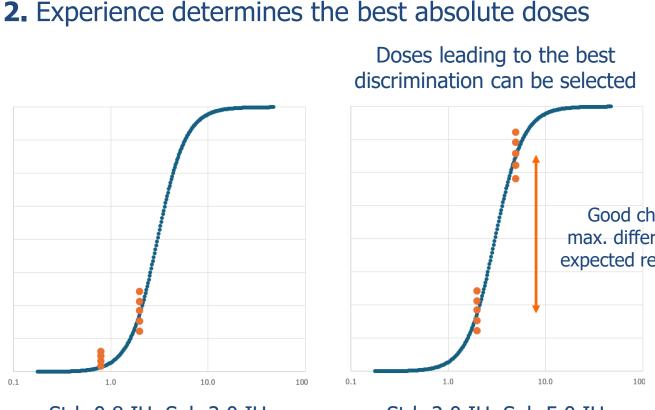
"A lower confidence limit \geq 32 IU/dose is required"

Preparations

		Information	Potency		
Table	Preparation	ID	Potency	Value	
1	Standard 👻	S	Assigned	160 IU/vial	
2	Sample 1 👻	Т	Assigned 🗸	80 IU/dose	

Assigned potency = 80 IU/dose Ratio = 80/32 = 2.5

Dose selection, limit test


1. Official requirements determine the best ratio between doses

"A lower confidence limit \geq 32 IU/dose is required"

Preparations

		Information	Potency		
Table	Preparation	ID	Potency	Value	
1	Standard 👻	S	Assigned	160 IU/vial	
2	Sample 1 👻	Т	Assigned 🗸	80 IU/dose	

Assigned potency = 80 IU/doseRatio = 80/32 = 2.5

Std: 0.8 IU, Spl: 2.0 IU

Part 1: single-dose assay Part 2: combination of results

24 © EDQM, Council of Europe, 2024. All rights reserved.

Combination of assay results

Purpose: from n valid assay results to one result

Are estimates derived from **independent assays**?

Execution of either <u>does not affect</u> the probabilities of the possible outcomes of the other e.g. different runs, different days, different working solutions, ... Variation of n estimated results is due to a random errors

Assays on successive days using the original and retained dilutions of the standard are not independent assays.

unweighted combination for not independent assays

unweighted combination if the individual estimates are based on few measurements

Ph. Eur. Chapter 5.3 Statistical analysis of results of biological assays and tests

1. introduction

2. randomisation and independence of individual treatments

3. assays depending upon quantitative responses

3.2. the parallel-line model

3.3. the slope-ratio model

- 3.4. extended sigmoid dose-response curves
- 4. assays depending upon quantal responses

4.2. the probit method

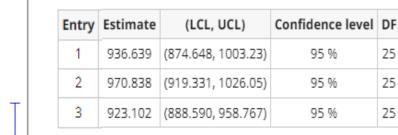
4.3. the logit method

4.5. the median effective dose

5. examples

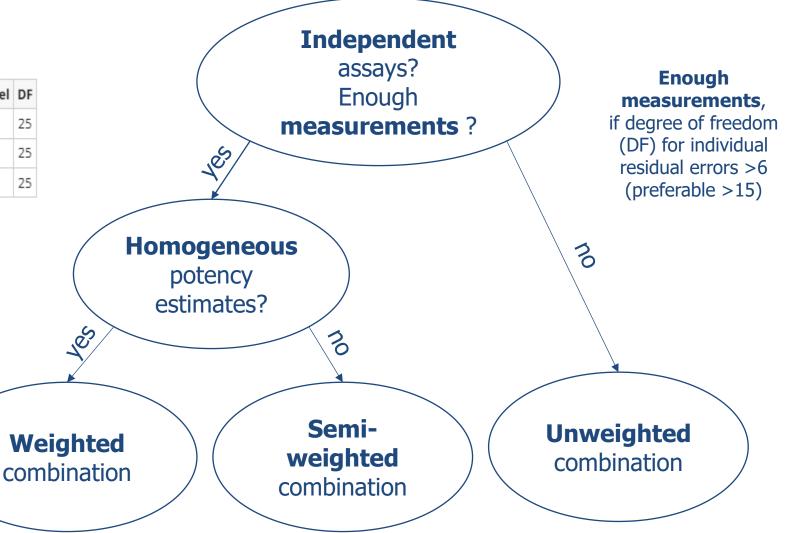
6. combination of assay results
6.2. combination of independent assay results
6.3. unweighted combination of assay results

7. beyond this annex

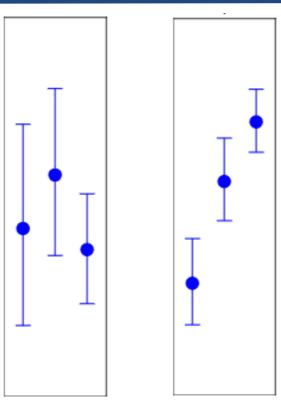

8. tables and generating procedures

9. glossary of symbols

10. literature

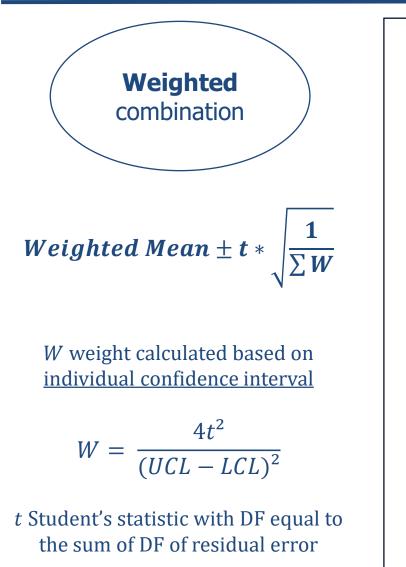

Three types of combination of assay results

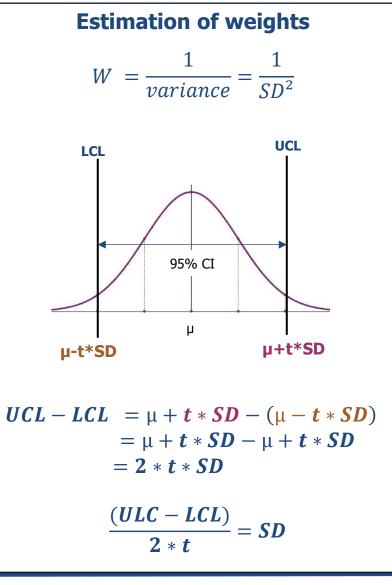
Homogeneity of assay results, p-value: 0.298


Geometric	Potency (1000 IU/mg)			
combination	Estimate	(LCL, UCL)		
Weighted	938.014	(912.564, 964.174)		
Semi-weighted	938.014	(912.465, 964.279)		
Unweighted	943.314	(884.424, 1006.12)		
DEN(as affed as as	It as the same of			

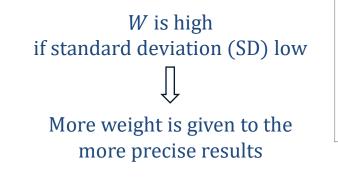
95% confidence limits are reported.

The assay can be considered homogeneous if the variance between the individual estimates is not greater than those predicated by the individual confidence intervals




Evaluation based on p-value of χ^2 distribution:

- p-value >0.10 => potency estimates sufficiently homogeneous
- p-value ≤0.10 => potency estimates heterogeneous



Weighted combination

Estimate	(LCL, UCL)	Confidence level	DF
936.639	(874.648, 1003.23)	95 %	25
970.838	(919.331, 1026.05)	95 %	25
923.102	(888.590, 958.767)	95 %	25

Arithmetic	Poten	cy (1000 IU/mg)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	937.362	(911.560, 963.164)	100	(97.25, 102.75)	

The more measurements in individual assays the tighter weighted confidence interval

Semi-weighted combination

weighted combination Weighted' Mean $\pm 2 * \sqrt{\frac{1}{\sum W'}}$

Semi-

W weight calculated based on intra- and inter-assay variation

$$W' = \frac{1}{intra^2 + inter^2}$$

 $\frac{\text{intra-assay variation}}{\text{intra}^2 = \frac{1}{W}}$ same *W* as calculated for weighted combination

inter-assay variation

$$inter^{2} = \frac{\sum (M - \overline{M})^{2}}{n - 1} - \frac{\sum intra^{2}}{n}$$

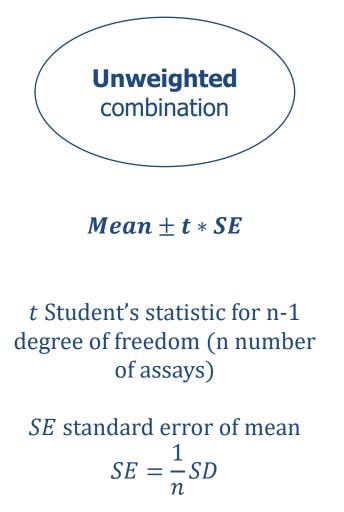
n number of assays M assay estimate \overline{M} mean of estimates

Estimate	(LCL, UCL)	Confidence level	DF
774.169	(750.584, 798.498)	95 %	inf
737.265	(714.811, 760.428)	95 %	inf
817.927	(793.001, 843.639)	95 %	inf

Enlarged confidence interval

Enlarged weights

Homogeneity of assay results, p-value: < 0.001

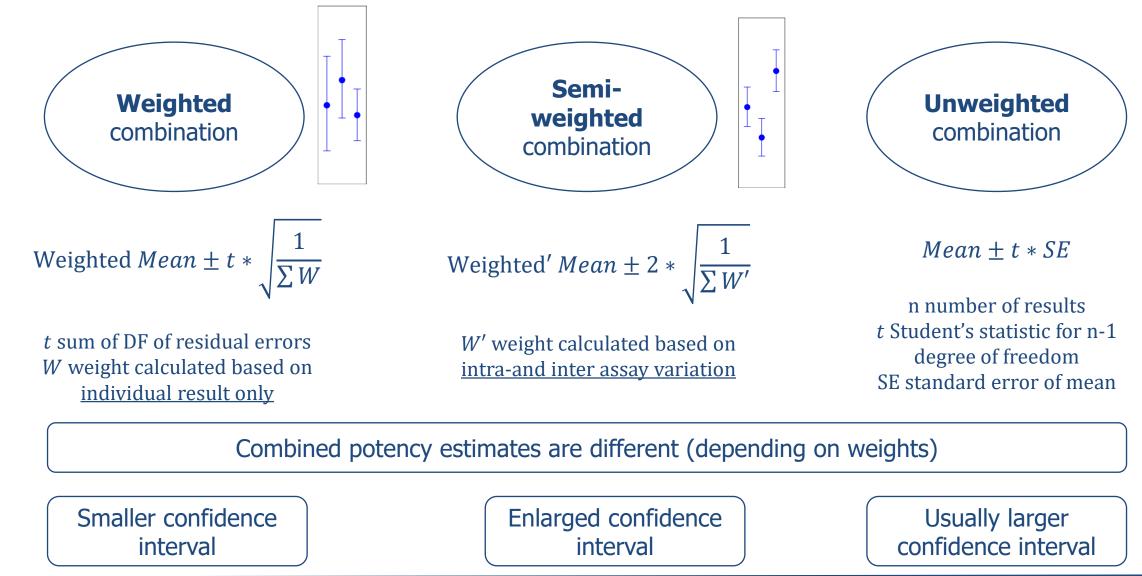

Arithmetic	Uni	ts (ug/ED50)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	773.656	(759.822, 787.491)	100	(98.21, 101.79)	
Semi-weighted	776.194	(729.570, 822.818)	100	(93.99, 106.01)	
Unweighted	776.454	(676.146, 876.761)	100	(87.08, 112.92)	

95% confidence limits are reported.

Unweighted RSD(%): 5.2

Unweighted combination

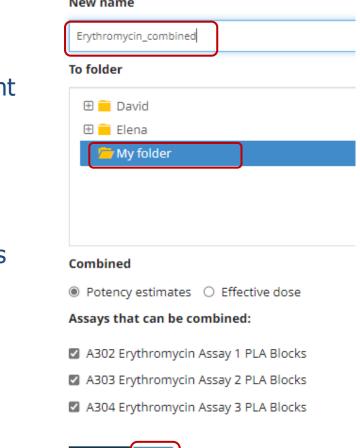
df	p = 0.05	p = 0.01	df	p = 0.05	p = 0.0
1	12.706	63.656	22	2.074	2.819
2	4.303	9.925	24	2.064	2.797
3	3.182	5.841	26	2.056	2.779
4	2.776	4.604	28	2.048	2.763
5	2.571	4.032	30	2.042	2.750
6	2.447	3.707	35	2.030	2.724
7	2.365	3.499	40	2.021	2.704
8	2.306	3.355	45	2.014	2.690
9	2.262	3.250	50	2.009	2.678
10	2.228	3.169	60	2.000	2.660
12	2.179	3.055	70	1.994	2.648
14	2.145	2.977	80	1.990	2.639
16	2.120	2.921	90	1.987	2.632
18	2.101	2.878	100	1.984	2.626
20	2.086	2.845	00	1.960	2.576


Estimate	(LCL, UCL)	Confidence level	DF
936.639	(874.648, 1003.23)	95 %	25
970.838	(919.331, 1026.05)	95 %	25
923.102	(888.590, 958.767)	95 %	25

n is usually low Large confidence interval

Arithmetic	Poten	cy (1000 IU/mg)	Rel. To	Estimate (%)
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)
Weighted	937.362	(911.560, 963.164)	100	(97.25, 102.75)
Semi-weighted	937.362	(911.458, 963.266)	100	(97.24, 102.76)
Unweighted	943.526	(882.411, 1004.64)	100	(93.52, 106.48)

Three types of combination of assay results



Combine assays in CombiStats online

Select the assays in a folder My workspace / My folder New name + New record Selection -New folder 🗲 Up View -🖀 Open **Condition for combination**: Search in: My folder To folder Combine.. analysis results should be present Export to zip file Туре Name assay must be published -A 4PL with log transformation Move to ... Copy to... A A114 PhEur Ex 541 4PL Sigmoid Delete.. A A302 Erythromycin Assay 1 PLA Blocks For sigmoid curve models A A303 Erythromycin Assay 2 PLA Blocks potency estimates or effective doses A 2 A304 Erythromycin Assay 3 PLA Blocks can ge combined A A323 Yellow Fever Vaccine Exponential Reg Or combine opened assays

Combine assay results

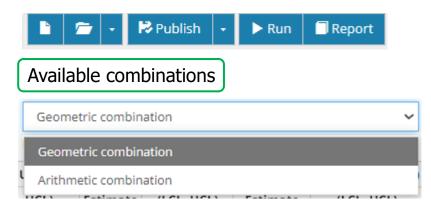
Cancel

OK

Available Options

https://combistats.edqm.eu/help/ EN17 Combination of Assay Results

Combination of assay results


Remark		
l can write		

Only fields Remark, Combine by and Confidence level for combination can be **modified**

The content of Information about assays and Potency results **cannot be modified**

One or more potency results can be excluded by **double-click**

Once the options chosen, run the analysis

Information about assays

Entry	Assay name	Project	Assay
1	A302 Erythromycin Assay 1 PLA Blocks	Erythromycin	1
2	A303 Erythromycin Assay 2 PLA Blocks	Erythromycin	2
3	A304 Erythromycin Assay 3 PLA Blocks	Erythromycin	3

Potency results

Entry	Preparation	Id.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
Э	Sample 1	θ	1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

95

Combine by	1
------------	---

Preparation	~
Preparation	
Id.	

96

Integer between 80 and 99

Arithmetic and geometric combination

Geometric combination

Potency results

Entry	Preparation	Id.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1		1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1		1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1		1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

CombiStats software

- ✓ applies log-transformation to estimates and confidence limits,
- ✓ performes calculations on the log-scale,
- ✓ appies **anti-log-function** on final results

Arithmetic combination

If the estimates are already on the log scale, no transformation prior to the combination

Effective dose results

Entry	Preparation	Id.	Units	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	А	log10 ED50/vial	4.73374	(4.45322, 5.01399)	95 %	inf
1	Sample 2	А	log10 ED50/vial	3.59821	(3.31617, 3.87813)	95 %	inf

CombiStats software

✓ performes calculations on the log-scale

If potency unit contains "**log**", <u>arithmetic combination only</u> is displayed. Otherwise, geometric combination presented by defaults. User has the possibility to change to arithmetic combination

Combined results

Combined by Preparation

Potency results

Entry	Preparation	Id.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1	U	1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

Combine by

Confidence	level

Preparation

onnachee	
95	

Preparation Sample 1

Geometric combination

Homogeneity of assay results, p-value: 0.298

%

Geometric	Poten	cy (1000 IU/mg)	Rel. To	Estimate (%)	Rel. To Assu	med/Assigned (%)
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)
Weighted	938.014	(912.564, 964.174)	100	(97.29, 102.79)	93.80	(91.26, 96.42)
Semi-weighted	938.014	(912.465, 964.279)	100	(97.28, 102.80)	93.80	(91.25, 96.43)
Unweighted	943.314	(884.424, 1006.12)	100	(93.76, 106.66)	94.33	(88.44, 100.61)

95% confidence limits are reported.

Unweighted gCV(%): 2.6

Potency **units** should be the same (case sensitive) If potency **values** not the same, no Rel. to Assumed/Assigned (%)

Potency results

Entry	Preparation	Id.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	Т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1	Т	? IU / mg	923.102	(888.590, 958.767)	95 %	25

Combine by

Confidence level

Preparation

 \sim

Preparation Sample 1

Geometric combination

~

Homogeneity of assay results, p-value: 0.298

Geometric	Pote	ency (IU/mg)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	938.014	(912.564, 964.174)	100	(97.29, 102.79)	
Semi-weighted	938.014	(912.465, 964.279)	100	(97.28, 102.80)	
Unweighted	943.314	(884.424, 1006.12)	100	(93.76, 106.66)	

95% confidence limits are reported.

Unweighted gCV(%): 2.6

36 © EDQM, Council of Europe, 2024. All rights reserved.

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter LinkedIn: https://www.linkedin.com/company/edqm/ X: @edqm_news Facebook: @EDQMCouncilofEurope

