THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)

CombiStats online Training module 3

Assays based on quantitative responses

Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

Indirect dilution assay

Common structure

- X = several preparations & doses
- Y = single or repeated measurements

Regression models

in CombiStats

Quantitative responses

Y = continuous/discrete data E.g. ELISA (absorbance)

Doses	(1)	(2)
1/10	2.912	2.917
1/20	2.579	2.654
1/40	2.130	2.212
1/80	1.651	1.638
1/160	1.073	0.973
1/320	0.585	0.666
1/640	0.463	0.356
1/1280	0.266	0.234
1/2560	0.228	0.197
1/5120	0.176	0.215

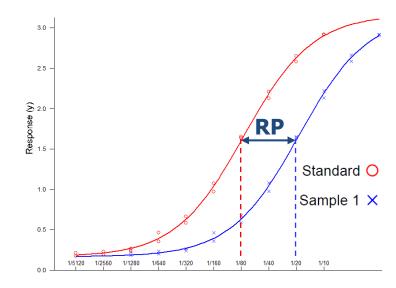
Ph. Eur. Chapter 5.3 Statistical analysis of results of biological assays and tests

- 1. introduction
- 2. randomisation and independence of individual treatments
- 3. assays depending upon quantitative responses
 - 3.2. the parallel-line model
 - 3.3. the slope-ratio model
 - 3.4. extended sigmoid dose-response curves
- 4. assays depending upon quantal responses
 - 4.2. the probit method
 - 4.3. the logit method
 - 4.5. the median effective dose
- 5. examples
- 6. combination of assay results
 - 6.2. combination of independent assay results
 - 6.3. unweighted combination of assay results
- 7. beyond this annex
- 8. tables and generating procedures
- 9. glossary of symbols
- 10. literature

Application

Several preparations

Ref. preparation known concentration

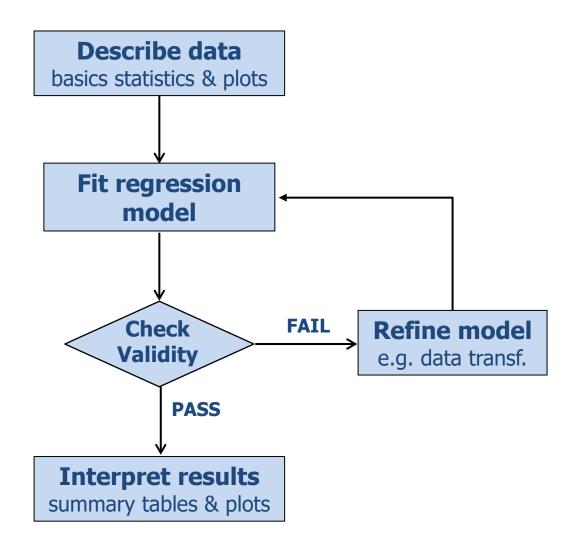

Sta			
Ass. pot.	0.4 IU/	ml	
Doses	(1)	(2)	
1/10	2.912	2.917	2.915
1/20	2.579	2.654	2.617
1/40	2.130	2.212	2.171
1/80	1.651	1.638	1.645
1/160	1.073	0.973	1.023
1/320	0.585	0.666	0.626
1/640	0.463	0.356	0.410
1/1280	0.266	0.234	0.250
1/2560	0.228	0.197	0.213
1/5120	0.176	0.215	0.196

Ref. prep.: international standard (IS), certified reference material (CRM), biological reference preparation (BRP), etc.

Test preparation(s) conc. to be determined

C-	mple 1		I
26			
Ass. pot.	?IU/m	l	
Doses	(1)	(2)	
1/2.5	2.914	2.921	2.918
1/5	2.586	2.662	2.624
1/10	2.133	2.220	2.177
1/20	1.654	1.640	1.647
1/40	1.078	0.974	1.026
1/80	0.587	0.674	0.631
1/160	0.465	0.361	0.413
1/320	0.268	0.238	0.253
1/640	0.232	0.200	0.216
1/1280	0.183	0.222	0.203

Test prep.: candidate IS, CRM or BRP, manufactured batches, etc.



Test Preparation

- Relative Potency (RP) ~ 1/4
- Potency ~ 0.1 IU/mL

Steps of statistical analysis

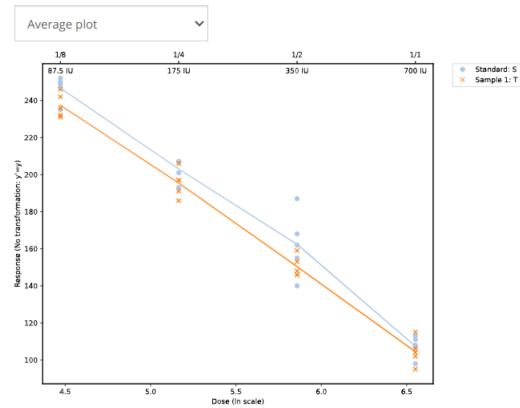
Data description

Purpose

- Check/correct any typos
- Assess data distribution (normal)
- Detect outliers, trend

How

- Overview of raw data table
- Basic statistics (mean, std, ...)
- Scatterplot


Data description

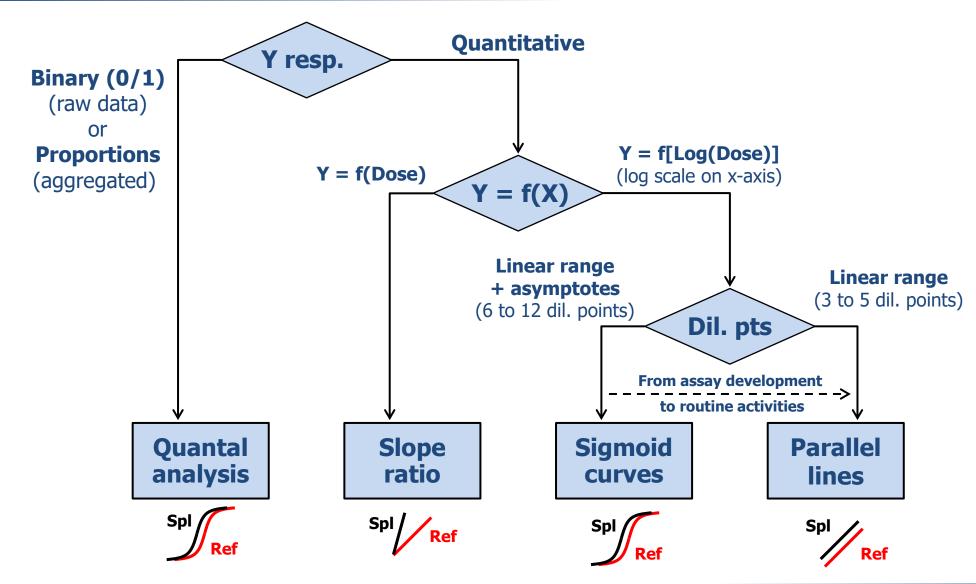
Raw data

		Table 1			:			
Preparation	Standa	rd						
ID	D S							
Potency	Potency Assigned							
Potency value	700 IU/	/vial						
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
1/8	252	249	247	250	235	247	7	2.7
1/4	207	201	193	207	207	203	6	3.0
1/2	168	187	162	155	140	162	17	10.6

		Table 2			:			
Preparation	Sample	e 1						
ID	Т							
Potency	Assum	Assumed						
Potency value	tency value ? IU/vial							
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
1/8	242	236	246	231	232	237	6	2.7
1/4	206	197	197	191	186	195	8	3.8
1/2	146	153	148	159	146	150	6	3.7
1/1	115	102	104	106	95	104	7	6.9

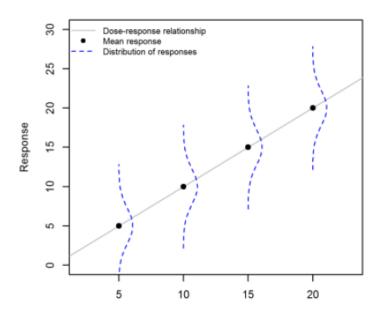
Excluded values are not displayed.

Blank results


0.045	0.086	0.049	0.051	0.062
0.027	0.062	0.038	0.061	0.047

 Mean
 SD
 RSD%

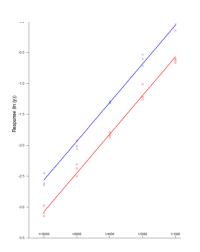
 0.053
 0.016
 30.5

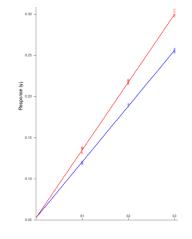

Regression models

Model validity

PLA and SRA = linear regression lines (Y = a + b X + error)

Independent data, normally distributed with same variance across dose range

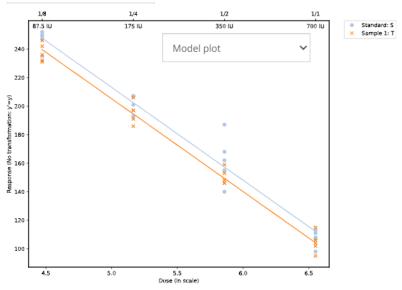


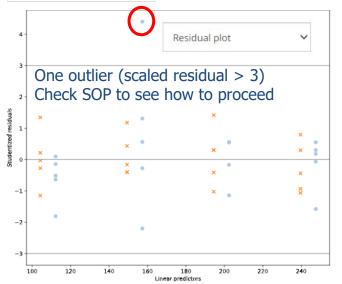

Significant regression required (see Anova)

Flat slope = higher uncertainty about potency results

"Good fit": the straight line best summarises data: visual check (regression plot, residual plot) and Anova (nonlinearity contrast)

- PLA: common slope => "Good parallelism" between reg. lines (visual check + Anova non-parallelism)
- SRA: common intercept (visual check + Anova intercept contrast




Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

Model validity, ex 1.1

Anova table		R ² All	0.974576	
Normal	~	R ² Standard	0.965105	

Source of variation	Degrees of freedom	Probability	Level of significance
Preparations	1	0.006507	**
Regression	1	< 0.000001	***
Non-parallelism	1	0.565069	
Non-linearity	4	0.493324	
Non-linearity Table 1	2	0.218293	
Non-linearity Table 2	2	0.869200	
Treatments	7	< 0.000001	***
Residual error	32		
Total	39		

├ Significant slope? Yes (***)├ Lack of parallelism? No (NS)

Lack of linearity? No (NS)

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Comparison of slopes: non-parallelism contrast (Anova) **or** equivalence testing approach (not both)

Equivalence of slopes

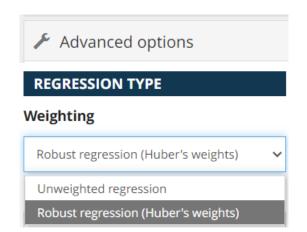
Standard: S Sample 1: T

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000
Sample 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)

Slopes: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Common Slope


Estimated value	-65.0800
Lower conf. Limit	-68.0645
Upper conf. Limit	-62.0955

90% confidence level

Model validity, ex 1.1

Robust regression: in-between solution when outliers are kept in the data set

Robust regression to alleviate the potential negative effect of the outlier

classical regression (with outlier)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000
Sample 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)

Common Slope

Estimated value	-65.0800
Lower conf. Limit	-68.0645
Upper conf. Limit	-62.0955

R² All 0.974576 R² Standard 0.965105

robust regression (with outlier)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard	
Standard: S	-66.4107 (-70.0356, -62.7859)	0.000000	1.00000	
Sample 1: T	-64.0538 (-67.6259, -60.4817)	2.35694 (-2.73224, 7.44613)	0.964510 (0.891960, 1.04282)	

Common Slope

Estimated value	-65.2150
Lower conf. Limit	-67.7593
Upper conf. Limit	-62.6707

weighted R² All 0.980847 R² Standard 0.976214

classical regression (without outlier)

Equivalence of slopes

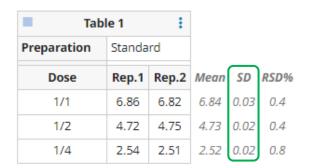
Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-67.0270 (-70.5932, -63.4608)	0.000000	1.00000
Sample 1: T	-64.0557 (-67.6031, -60.5082)	2.97134 (-2.05881, 8.00148)	0.955670 (0.884835, 1.03193)

Slopes: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).

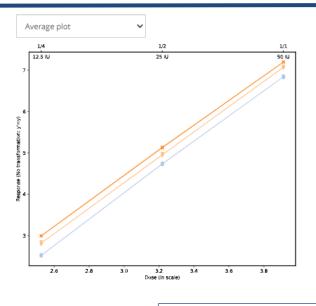
Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Common Slope

Estimated value	-65.5335
Lower conf. Limit	-68.0485
Upper conf. Limit	-63.0184


R ² All	0.983445
R ² Standard	0.982764

90% confidence level


Comparison of slopes (1)

•	Tab					
P	reparation	Sample	e 1			
	Dose	Rep.1	Rep.2	Mean	SD	RSD%
	1/1	7.20	7.19	7.20	0.01	0.1
	1/2	5.12	5.14	5.13	0.01	0.3
	1/4	3.00	2.99	3.00	0.01	0.2

Pooled SD = sqrt(0.00065) = 0.0255

Low variability between rep. (very good repeatability) = over sensitive statistical tests (Anova) = detection of signals (non-lin, non-par) of no practical relevance...

		Variances (SD ²)			
I	Dose	Std	Spl2		
Γ	1/1	0.00080	0.00080		
١	1/2	0.00045	0.00045 0.00020		
	1/4 0.00045 0.00005 0.0018				
Pooled var. 0 00065					

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	3.11261 (3.07101, 3.15422)	0.00000	1.00000
Sample 1: T	3.02966 (2.98806, 3.07126)	-0.0829550 (-0.130632, -0.0352783)	0.973349 (0.958347, 0.988579)
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029	0.984936 (3.969848, 1.00026)

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Average plot > parallelism looks good

Individual slopes > ratios are indeed close to 1

Anova > however, non-parallelism is significant (*)

What is going wrong?

Anova table

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

Stat. test = $\frac{0.003325}{0.000650}$ = 5.11538

Comparison of slopes (2)

- Option 1: difference testing approach
 - = non-parallelism contrast (Anova table)

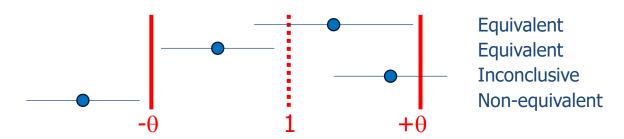
Anova table

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

Tested against residual error, i.e. variance between replicates

Low variance (high repeatability) => stat test likely to wrongly reject an assay where individual slopes are close

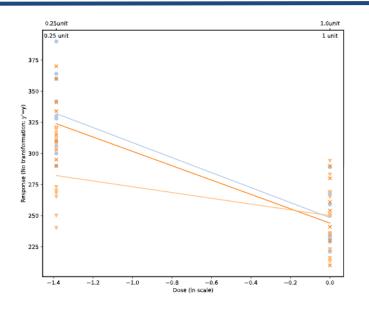
- Option 2: equivalence testing approach
 - = requires **predefined** equivalence margins $(\pm \Theta)$


Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	3.11261 (3.07101, 3.15422)	0.00000	1.00000
Sample 1: T	3.02966 (2.98806, 3.07126)	-0.0829550 (-0.130632, -0.0352783)	0.973349 (0.958347, 0.988579)
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029)	0.984936 (0.969848, 1.00026)

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

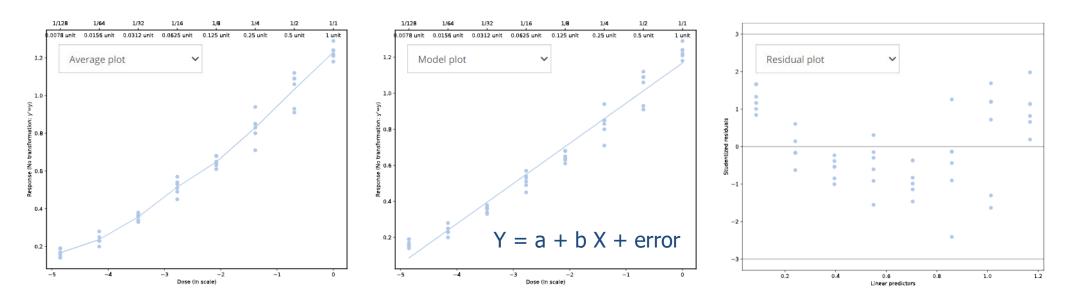
Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.


Use differences or ratios (not both)

Use option 1 or option 2 (not both)

Model validity, ex 3

This assay is invalid... There is a lack of parallelism between the standard and one test preparation


Two products are similar if they act as dilution of the same substance, i.e. implies parallelism on log(dose)

Non-parallel lines may suggest problems with:

- Performance of the method, and/or
- Manufacturing process (product has changed!)

Model validity, ex 2.1

This linear regression model is invalid... I can see it from the graphical representations

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.000026	***
Quadratic curvature	1	< 0.000001	***
Lack of quadratic fit	5	0.840927	
Treatments	7	< 0.000001	***
Residual error	40		
Total	47		

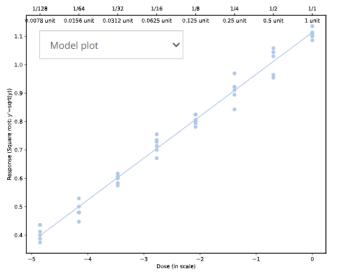
Anova.

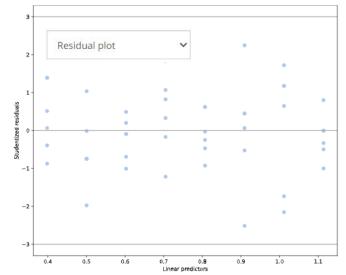
The slope is significant but...

Non-linearity has 3 *** Invalidity is confirmed

A quadratic term (***) could be added: $Y = a + b X + c X^2 + error$ Would a quadratic model be enough? Yes, lack of quadratic fit is NS

Y: measurements; a: intercept; b: slope; X: log(dose); X²: [log(dose)]²; error: variability between replicates


Model validity, ex 2.2


How to improve model adequacy?

A data transformation can help

Transformation

Square root: y'=sqrt(y) 🗸

This linear regression model is valid... I can see it from the graphical representations

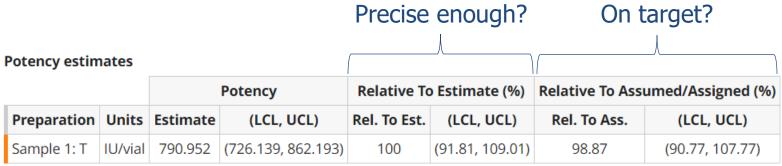
Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.711973	
Quadratic curvature	1	0.920982	
Lack of quadratic fit	5	0.595436	
Treatments	7	< 0.000001	***
Residual error	40		
Total	47		

Anova.

The slope is significant and...

Non-linearity is NS

Quadratic term is NS



Potency results, ex 1

Preparations

		Information	Potency	
Table	Preparation	ID	Potency	Value
1	Standard ▼	S	Assigned	700 IU/vial
2	Sample 1 ▼	Т	Assumed ▼	800 IU/vial

Expected value, e.g. formulation target

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Pharm. Eur.

Precision. Unless otherwise stated in the monograph, the confidence limits (P = 0.95) are not less than XX per cent and not more than YY per cent of the estimated potency.

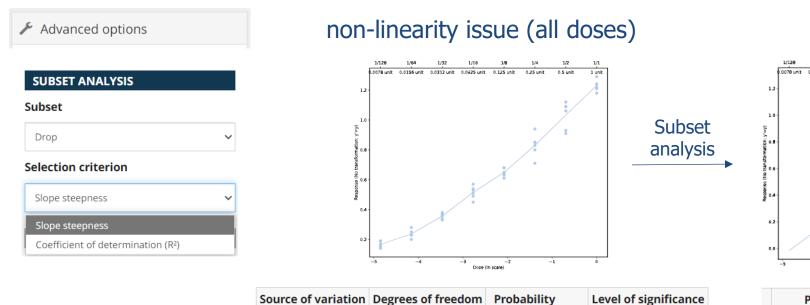
Recovery. The mean recovery must not be lower than XX per cent or above YY per cent.

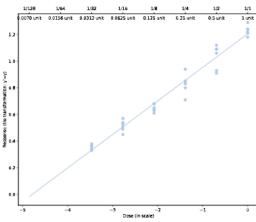
The amount is not less than XX per cent and not greater than YY per cent of the intended content.

Subset analysis (SA)

A new analysis option for PLA models

 Goal: find a subset of doses for which non-linearity and non-parallelism contrasts are NS (and the regression is significant...)

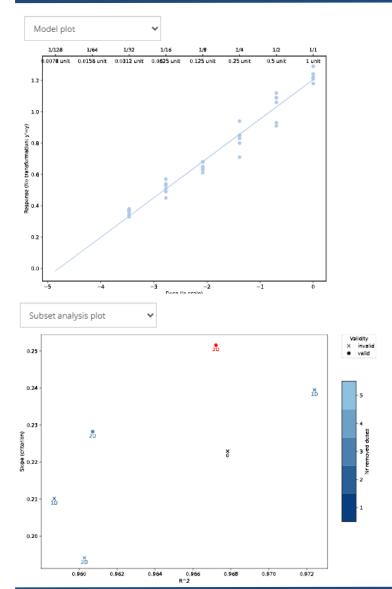



When is it available? significant non-linearity and/or non-parallelism contrasts (all doses)

< 0.000001

0.000026

6 doses retained


Probability	Level of significance
< 0.000001	***
0.218655	

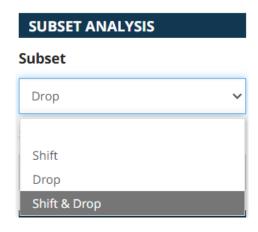
Regression

Non-linearity

SA > Export to Excel

Label	Removed doses	Sequence	Probability Regression	Probability Non-linearity	Slope (criterion)	R^2	Validity	Convergence	Kept
0	0	[12345678]	9.6E-38	0.000	0.223	0.968	invalid	converged	
1D	1	1 Drop: [1234567-]	7.6E-30	0.001	0.210	0.959	invalid	converged	
1D	1	1 Drop: [-2345678]	2.1E-31	0.029	0.240	0.972	invalid	converged	
2D	2	2 Drop: [123456]	1.2E-25	0.004	0.194	0.960	invalid	converged	
2D	2	2 Drop: [-234567-]	5.3E-24	0.154	0.228	0.961	valid	converged	
2D	2	2 Drop: [345678]	5.3E-25	0.219	0.252	0.967	valid	converged	x

Label 0: invalid regression model (all doses)


Label 1D: remove 1 dose (keep consecutive doses) => regression models remain invalid

Label 2D: remove 2 doses (keep consecutive doses) => 2 models are valid

Final model? steepest slope or highest R² (user's decision)

Label 3D? The subset analysis stopped at 2D because a valid model was found

SA > several preparations

Drop: remove the same dose number

Shift: remove a different dose number

In any case, keep contiguous doses

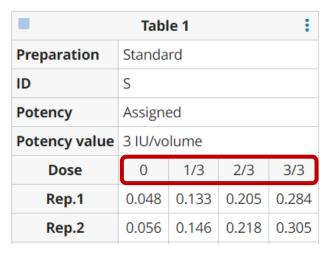
Case	Standard	Other prep.
1	[12345]	[12345]
,	statistical analy	sis, stop/continue
	SI	hift
2	[1234–]	[-2345]
3	[-2345]	[1234–]
	statistical analy	sis, stop/continue
6	[123—]	[-234-]
7	[-234-]	[123—]
8	[-234-]	[—345]
9	[—345]	[-234-]
	D	rop
4	[1234–]	[1234–]
5	[-2345]	[-2345]
	statistical analy	/sis, stop/continue
10	[123—]	[123—]
11	[-234-]	[-234-]
12	[—345]	[—345]

E.g. Shift & Drop
Label 1 (1 dose removed)
Cases 2, 3, 4, 5 will be tested
If one case is valid, then stop
Label 2 otherwise (cases 6 to 12)
...
Label k: a minimum of 3 doses

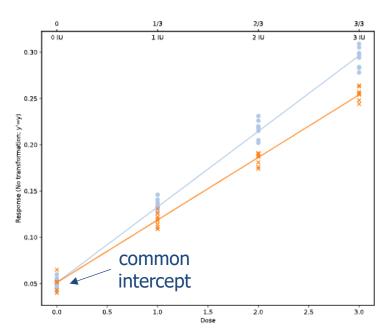
Further details in FAQ https://combistats.edgm.eu/faq/link/64/

When to use the subset analysis

- Assay development?
- Routine testing?


Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model


Main differences with PLA

x-axis: doses reported on an additive (arithmetic) scale

Doses > 0, 1, 2 and 3 IU

Zero-dose possible (on contrary to PLA)

Two products are similar if they act as dilution of the same substance, i.e. implies common intercepts when x-axis = doses

PLA SRA
Common slope → Common intercept
(parallelism) (intersection)

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	2	< 0.000001	***
Zero-dose	1	0.307927	
Intersection	1	0.221299	
Non-linearity 2		0.620909	
Non-linearity Table 1	1	0.485277	
Non-linearity Table 2	1	0.496788	

Significant slopes? Yes (regression ***)

Common intercept ? Yes (intersection NS)

Lack of linearity? No (non-linearity NS)

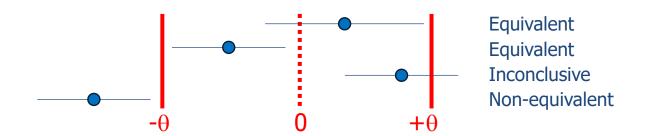
Comparison of intercepts

- **Option 1**: difference testing approach
 - = intersection contrast in Anova table

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	2	< 0.000001	***
Zero-dose	1	0.307927	
Intersection	1	0.221299	
Non-linearity	2	0.620909	
Non-linearity Table 1	1	0.485277	
Non-linearity Table 2	1	0.496788	
Treatments	6	< 0.000001	***
Residual error	57		

Tested against residual error, i.e. variance between replicates.

Low variance (high repeatability) => stat test likely to wrongly reject an assay where intercepts are quite close


- Option 2: equivalence testing approach
 - = requires **predefined** equivalence margins $(\pm \Theta)$

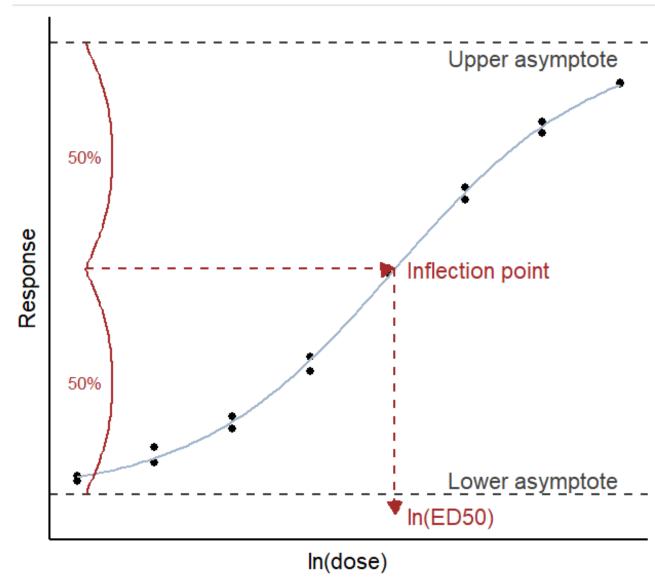
Equivalence of intercepts

Preparation	Intercept	Difference with Standard
Standard: S	0.0574167 (0.0503656, 0.0644677)	0.000000
Sample 1: T	0.0500417 (0.0429906, 0.0570927)	-0.00737500 (-0.0173467, 0.00259671)

Intercepts: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).

Differences of intercepts: confidence limits (in brackets) calculated for a 90% confidence level.

Use option 1 or option 2 (not both)



Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

4PL – dose-response relationship

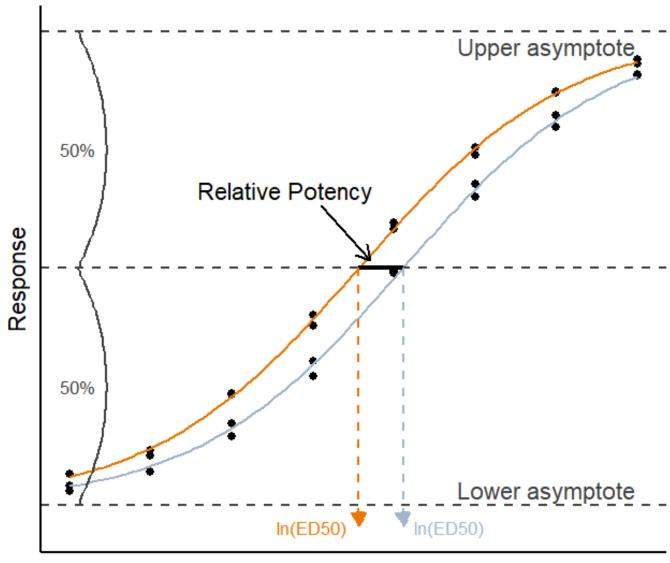
Symmetrical S-shaped curve

- One to two concentrations for each asymptotes
- Three to four concentrations for linear part of the curve

$$Response = D + \frac{A - D}{1 + exp(B * (ln(dose) - C))}$$

where D: lower asymptote

A: upper asymptote


C: inflection point (=ED50)

B: slope parameter

Assays: ELISA or cell-based potency assays

4PL - Potency

Assumptions

Reference and **Test** have the same biological activity

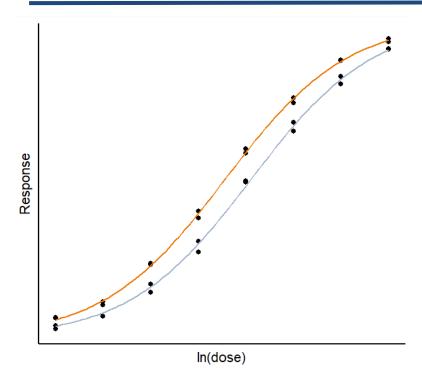
 Common slope, lower and upper asymptotes are the same (constrained model)

Visual verification

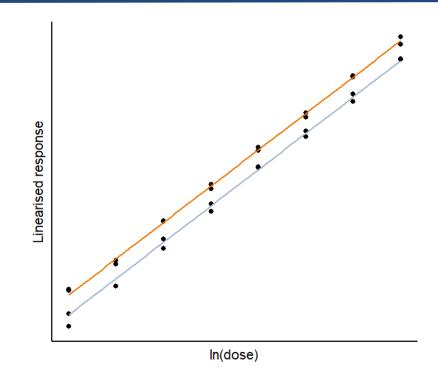
- Similar behaviour across the whole range of doses
 Check assay validity criteria
- Variability of response data is the same for each dose and follows normal distribution

Check residual plot

Relative Potency


largest distance between preparations

edom



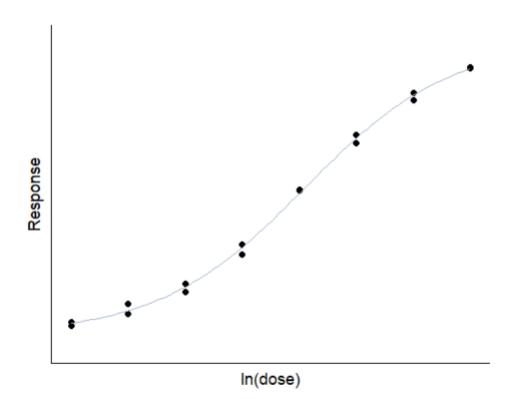
4PL – Assay validity criteria

Linearisation of dose-response relationship via logit transformation (default)

Analysis of variance (ANOVA) performed on linearised data to access assay validity

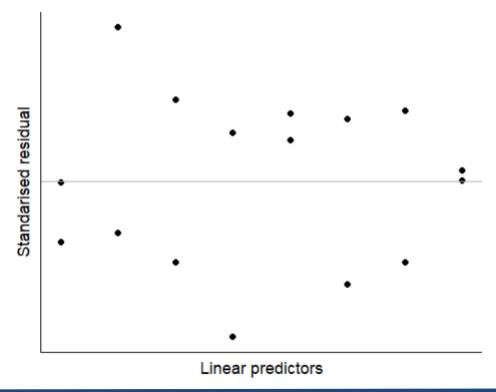
Validity criteria

- The p-value for **regression** is significant
- The p-value for **non-parallelism** is not significant
- The p-value for **non-linearity** is not significant

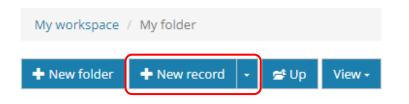

Source of variation	Probability	Level of significance
Preparations	0.328776	
Regression	< 0.000001	***
Non-parallelism	0.696804	
Non-linearity	0.937394	

4PL assumption: constant variability at each dose

Assumption


Variability of response data is the same for each dose and follows **normal distribution**

Verification


Similar variability over doses: inspect residual plot same dispersion of the points around the vertical line

Normal distribution not enough data to evaluate

4PL - create a record

1. Create a new record

Taskbar in editor

2. Enter the record name, select destination folder and set-up

New record	Assay	Type of design	Response variable	Model
Assay	Multiple-dose 🗸	Completely randomised 🗸	Quantitative	Sigmoid curves (4-PL, In dose)
Name				
Assay1_4PL	Preparations	Max doses	Max replicates	
To folder	2	5	3	
⊞ 📋 David				
Elena My folder	Cancel Create			

4PL – data entry

Preparations

		Information		Pot	ency	Pre-dilution		
Table	Preparation	ID	Long label	Potency	Value	Reconstitution	Stock solution	
1	Standard +	S	standard	Assigned	100 IU/amp.	1 amp./mL	1 mL/10 mL	
2	Sample 1 ▼	Т	test sample	Assumed ▼	80 IU/vial	1 vial/0.5 mL	0.5 mL/5 mL	
3	Sample 2 ▼	C1	Control 1	Assumed ▼	25 IU/mL			
4	Sample 3 ▼	C2	Control 2	Assumed →	120 IU/mL			

Observ.	c1	c2	c3	c4	с5	с6	c7	с8	c9	c10	c11	c12
r1												
r2	0.031	0.044	0.027	0.032	0.028	0.051	0.117	0.097	0.104	0.093	0.112	0.047
r3	0.046	2.912	2.579	2.130	1.651	1.073	0.585	0.463	0.266	0.228	0.176	0.031
r4	0.024	2.917	2.654	2.212	1.638	0.973	0.666	0.356	0.234	0.197	0.215	0.050
r5	0.030	3.017	2.801	2.401	1.918	1.364	0.861	0.497	0.340	0.242	0.178	0.035
r6	0.045	2.987	2.808	2.450	1.963	1.299	0.854	0.496	0.344	0.217	0.125	0.024
r7	0.051	2.105	2.074	2.162	1.948	2.037	1.974	1.925	2.017	2.106	1.938	0.038
r8												

Blank results

0.031	0.046	0.024	0.030	0.045	0.051
0.047	0.031	0.050	0.035	0.024	0.038

 Mean
 SD
 RSD%

 0.038
 0.010
 26.2

https://combistats.edqm.eu/help/

EN01 Information And Remarks

EN02 Taskbar

EN05 Preparations Table

EN06 Rawdata Tables

EN07 Show Design

EN08 Table of Blank Results

Potency value	100 IU	amp.			ΕN
Reconstitution	1 amp.	/mL			
Stock solution	1 mL/1	0 mL			
Dose	Rep.1	Rep.2	Mean	SD	RSD%
1/1	2.912	2.917	2.914	0.004	0.1
1/2	2.579	2.654	2.617	0.053	2.0
1/4	2.130	2.212	2.171	0.058	2.7
1/8	1.651	1.638	1.644	0.009	0.6
1/16	1.073	0.973	1.023	0.071	6.9
1/32	0.585	0.666	0.626	0.057	9.2
1/64	0.463	0.356	0.410	0.076	18.5
1/128	0.266	0.234	0.250	0.023	9.1
1/256	0.228	0.197	0.213	0.022	10.3
1/512	0.176	0.215	0.196	0.028	14.1

Table 1

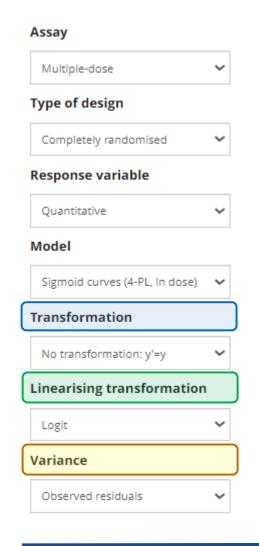
S

Standard

standard

Assigned

Preparation


Long label


Potency

4PL – Wizard and Advanced options

Wizard

Responses can be transformed prior applying linearising transformation

inearising transformation.					
Logit	~				
Probit					
Logit					
Angular					
Rectangular					
Gompit					

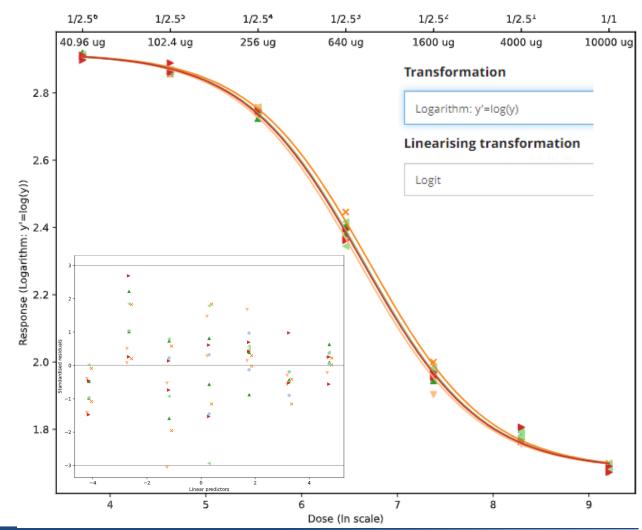
If observed residuals cannot be calculated or are not representative other options are available

Advanced options

Weighted regression (1/m²)

User-defined (w=...)

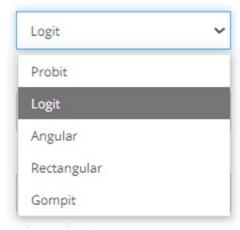
FIXED PARAMETER	ı					
Slope						
1.0	3 model parameters can be fixed:					
Addition	Addition = lower asymptote					
0.15	Multiplication = upper – lower asymptote					
Multiplication	a special spec					
3.3						
Slope / intercept 95 Potency / Effective dos 95	Imported from Desktop: 90%					
Weighting Unweighted regression Unweighted regression Weighted regression (1	Weighing regression may help to stabilise the residuals over					



4PL example: log + logit transformation

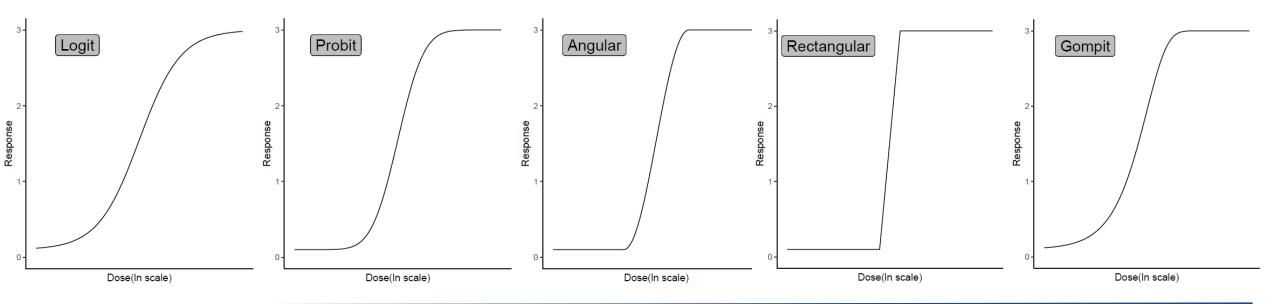
Variability is higher at higher response

1/2.50 1/2.55 1/2.54 1/2.53 $1/2.5^{2}$ 1/2.51 1/1 40.96 ug 102.4 ug 256 ua 640 ug 1600 ug 4000 ug 10000 ug 800 Response (No transformation: y'=y) 00 00 00 00 00 100 Dose (In scale)


4PL on log-transformed responses

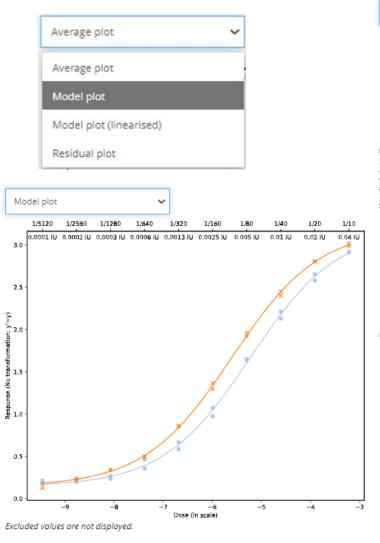
Linearising transformations

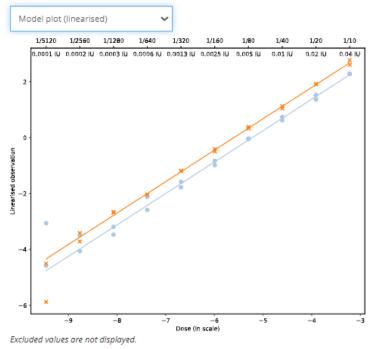
Linearising transformation


Logit: symmetrical with long tails (default for quantitative response)

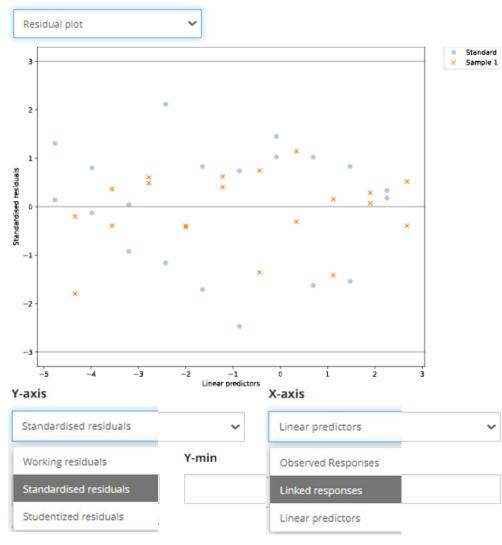
Probit: symmetrical with short tails

Angular: symmetrical without tails


Rectangular: shaped like straight lines (not used anymore)


Gompit: asymmetrical with one long tail and one short tail

4PL – Graphical presentation



Model plot (linearised) useful if non-linearity or non-parallelism criteria not met

Residual plot useful to check

- variability over the dose range
- outliers

4PL - Summary statistics

Regression parameters

Global model: convergence reached

R² Standard: convergence reached

weighted unweighted

R² All 0.991457 0.998112 R² Standard 0.993511 0.998558 EN10 Regression Parameters EN11 ANOVA Table EN12 Equivalence of Slope

Common Slope

Estimated value	1.12452
ower conf. Limit	1.08725
Jpper conf. Limit	1.16179

95% confidence level

Other model parameters

Lower asymptote	0.145458
Upper asymptote	3.19599

Equivalence of slopes

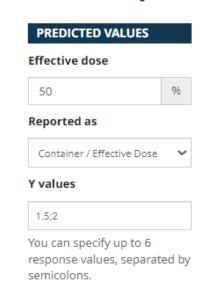
Preparation	Slope	Difference with Standard	Ratio with Standard	
Standard: S	1.12755 (1.07426, 1.18084)	0.000000	1.00000	
Sample 1: T	1.12162 (1.06949, 1.17375)	-0.00593102 (-0.0684964, 0.0566344)	0.994740 (0.940903, 1.05171)	

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Anova table

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability	Level of significance
Preparations	3	0.813672	0.271224	301.79	< 0.000001	***
Regression	1	9.43054	9.43054	3497.77	< 0.000001	***
Non-parallelism	1	6.55525e-05	6.55525e-05	0.0243133	0.876090	
Non-linearity	16	0.0127084	0.000794275	4.71353	0.997004	
Non-linearity Table 1	8	0.00764179	0.000955224	2.83433	0.944320	
Non-linearity Table 2	8	0.00506661	0.000633326	1.8792	0.984494	
Treatments	21	10.257	0.488428	3804.3	< 0.000001	***
Residual error	28	0.0754923	0.00269615			
Total	49	10.3325	0.210867			


4PL - Potency and effective dose values

Precision Recovery **Potency estimates** Potency Relative To Estimate (%) Relative To Assumed/Assigned (%) Preparation Units Estimate (LCL, UCL) (LCL, UCL) Rel. To Ass. Rel. To Est. (LCL, UCL) Sample 1 IU/ml | 0.583544 | (0.556798, 0.611586) 145.89 (139.20, 152.90) 100 (95.42, 104.81)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

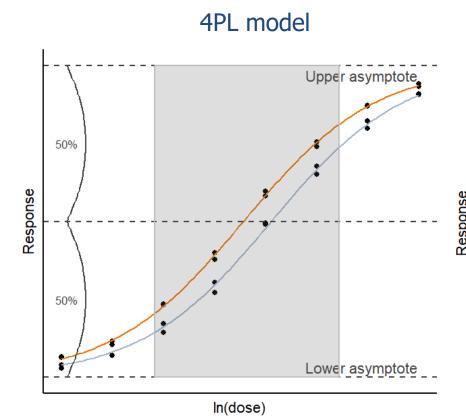
EN15 Potency Estimates EN16 Effective Dose & Prediction

Advanced options

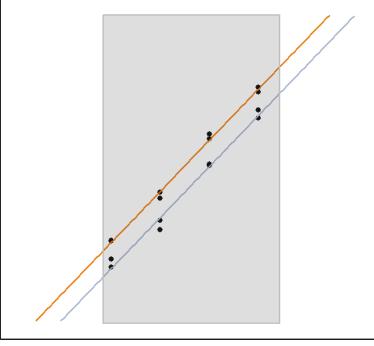
Effective dose estimates

		Eff	ective Dose (ED)	Relative To Estimate (%)		
Preparation Units Estimate		Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	
Standard	IU/ED50	0.00539071	(0.00521456, 0.00557304)	100	(96.73, 103.38)	
Sample 1	IU/ED50	0.00369516	(0.00357478, 0.00381967)	100	(96.74, 103.37)	

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).


Inverse predictions

			y-value(s)				
			1.5	2			
Preparation	Units	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)		
Standard	IU	0.00441394	(0.00426822, 0.00456375)	0.00796270	(0.00769247, 0.00824648)		
Sample 1	IU	0.00302561	(0.00292584, 0.00312811)	0.00545817	(0.00527405, 0.00565138)		


Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Parallel lines model as special case of 4PL

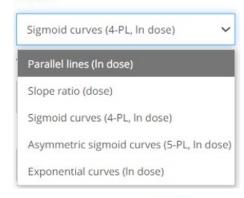
Parallel line model

In(dose)

Potency estimates

		Potency		
	Preparation	Units	Estimate	(LCL, UCL)
	Sample 1	IU/ml	0.584197	(0.555852, 0.614008)

Potency estimates


		Potency		
Preparation	Units	Estimate	(LCL, UCL)	
Sample 1	IU/ml	0.572008	(0.533897, 0.613680)	

New feature in Online version

Subset analysis

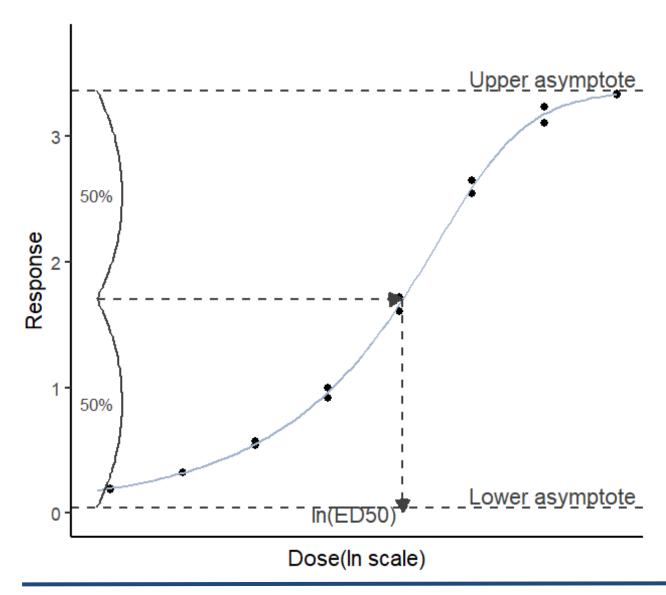
may help in dose selection

Model

Change model in Wizard

Subset

Subset set-up Advance options



Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

5PL – dose-response relationship

Asymmetrical S-shaped curve

- One to two concentrations for each asymptotes
- Three to four concentrations for middle part of the curve

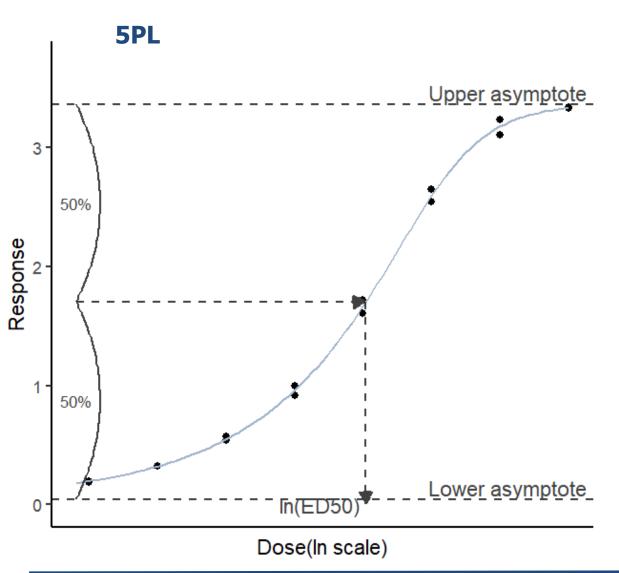
$$Response = D + \frac{A - D}{\left[1 + exp(B * (ln(dose) - C))\right]^{6}}$$

where D: upper asymptote

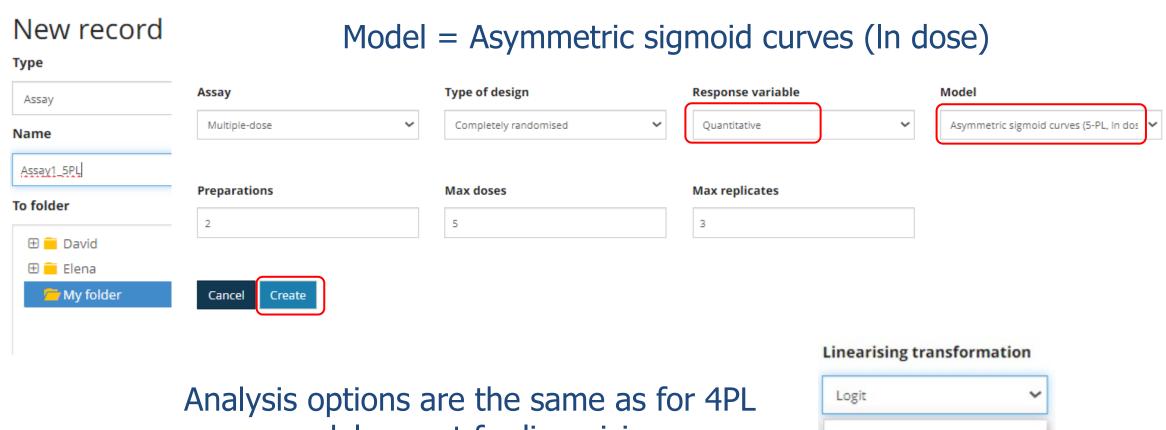
A: lower asymptote

C: location parameter $(\neq ED50)$

B: Slope parameter


G: Asymmetry factor

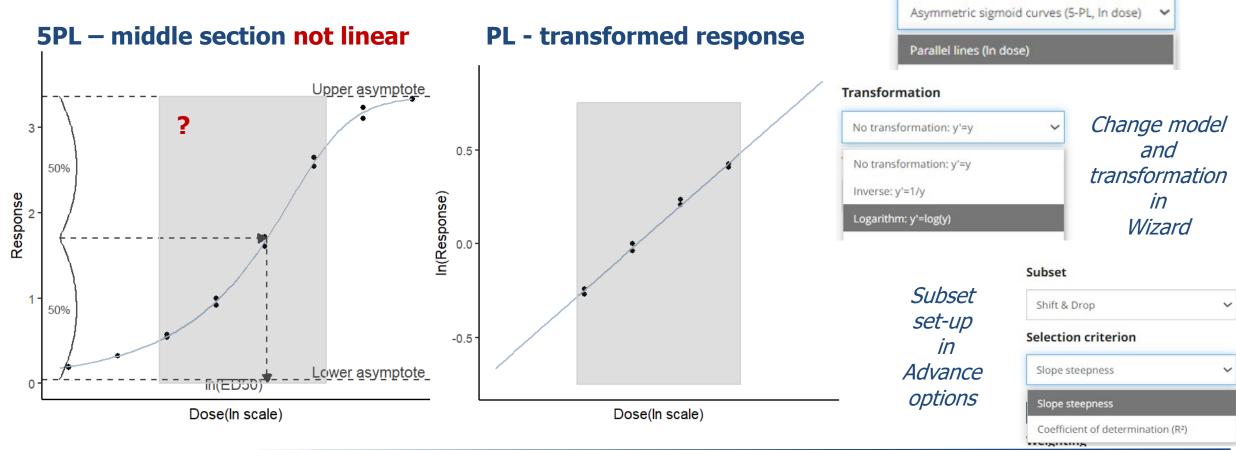
Assays: ELISA or cell-based potency assays


5PL – 4PL comparison

Model	R²	Lower asymptote	Upper asymptote	ED50
5PL	0.994	0.048	3.36	0.244 IU
4PL	0.988	0.207	3.52	0.261 IU

5PL - Creation and evaluation in CombiStats online

Analysis options are the same as for 4PL model except for linearising transformation



Probit

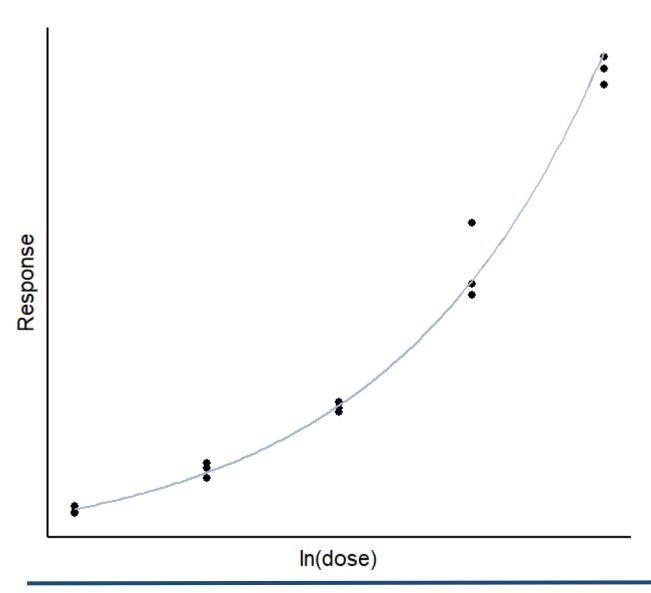
Logit

Parallel line model for routine testing

Middle section (section of the steepest slope) is often not linear for asymmetrical sigmoid models. An appropriate transformation to be applied for parallel line model.

New feature **Subset analysis**

may help in dose selection


Model

Content

- Introduction
- Parallel-line analysis
- Slope-ratio analysis
- 4-parameter logistic model
- 5-parameter logistic model
- 3-parameter exponential model

3PM – dose-response relationship

Modelling exponential growth

No upper asymptote as in 4PL and 5PL

$$Response = D + A * exp(B * (ln(dose) - C))$$

where D: addition

A: multiplication

C: location parameter

B: slope parameter

Assay:

Hepatitis B vaccine (A3.29),

Yellow fever vaccine (A3.23), plaque forming units

3PM - modelling exponential growth

Usually, variability of response increases with higher response values and needs to be stabilised.

$$Response = D + A * exp(B * (ln(dose) - C))$$

<u>Case 1</u>: responses are based on counting of events in a Poisson or Poisson-like process

 \Rightarrow Weighted regression (1/m)

<u>Case 2</u>: responses are based on exponential distribution

 \Rightarrow Weighted regression (1/m²)

If
$$D=0$$
 and $A=1$

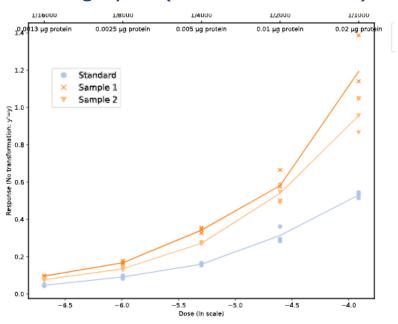
$$Response = exp(B * (ln(dose) - C))$$

$$ln(Response) = ln \left(exp(B * (ln(dose) - C)) \right)$$

$$= B * (ln(dose) - C)$$

$$= B * ln(dose) - B * C$$

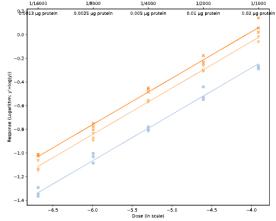
$$= -B * C + B * ln(dose)$$


intercept slope

Example: alternative PL with log-transformation

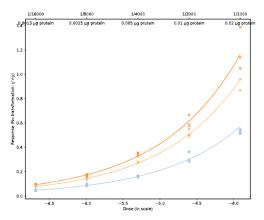
Hepatitis B vaccine (A3.29)

Standard and two test preparations 5 doses


Average plot (no transformation)

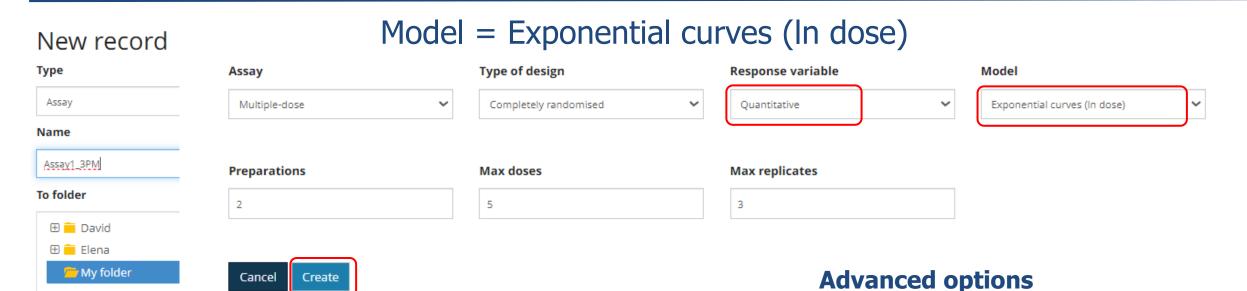
PL model with log-transformation

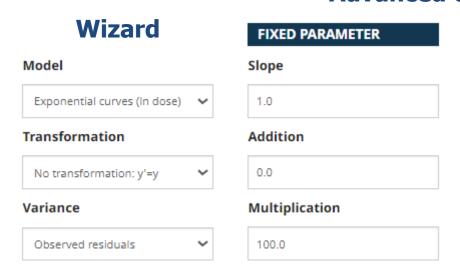
Potency estimates

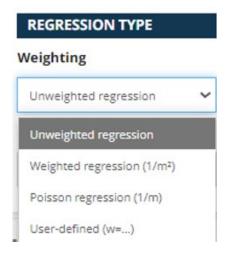

		Potency		
Preparation	Units	Estimate	(LCL, UCL)	
Sample 1	μg protein/ml	43.5762	(40.4020, 47.0668)	
Sample 2	μg protein/ml	35.2553	(32.7374, 38.0062)	

3PL weighted regression (D=0, A=1, weight=1/m²)

Potency estimates


			Potency		
	Preparation	Units	Estimate	(LCL, UCL)	
	Sample 1	μg protein/ml	43.5676	(40.4720, 46.9635)	
	Sample 2	μg protein/ml	35.2206	(32.7673, 37.8948)	





3PM - Creation and evaluation in CombiStats online

Analysis options are similar to 4PL model without linearizing transformation choice

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter

LinkedIn: https://www.linkedin.com/company/edqm/

X: @edqm_news

Facebook: @EDQMCouncilofEurope

