# THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)



European Directorate | Direction européenne for the Quality of Medicines | de la qualité du médicament & HealthCare | & soins de santé

#### COUNCIL OF EUROPE



CONSEIL DE L'EUROPE

#### Module 8:

## **Control of impurities : CEP approach**

Chloé BUMB and Gaël RONSIN EDQM, Certification of Substances Department

#### EDQM training 2024 12 December 2024 (10:00 – 11h30)





2 © EDQM, Council of Europe, 2024. All rights reserved.

#### **Impurities & Control strategy in Active Substances\***

- >Related Substances (Organic impurities)
- >Mutagenic impurities
- >Nitroso impurities
- Residual solvents
- **>Elemental impurities**
- >Inorganic impurities
- What is the impact of a certain impurity



in the impurity profile of the API? How to set specifications accordingly?

\**NB: Excipients are out of scope of this presentation.* 



#### **Impurities & Control strategy in Active Substances**

#### **Directive 2001/83/EC, as amended** Where a specification contained in a Ph. Eur. monograph might be insufficient to ensure the quality of the substance, the competent authorities may request more appropriate specifications from the marketing authorisation holder

*For veterinary products:* 

REGULATION (EU) 2019/6 applies (repealing Directive 2001/82/EC)



## Which key guidance? A brief recap...





5 © EDQM, Council of Europe, 2024. All rights reserved.

#### **Expectations ?**

Analytical specifications should **control** the impurity profile and be **representative** of the process adopted

-



### Impurity profile of the material should be **known** in detail

Discussion showing **understanding** of the impurity profile. <u>Origin, fate</u> and <u>carry-over</u> of impurities as basis for justification to the proposed specifications.



# Case study (fictitious)

#### **Venlafaxine hydrochloride:**



edom

European Directorate Direction europée for the Quality de la qualité of Medicines du médicament & HealthCare & soins de santé

CONSEIL DE L'ELIROI

### **Organic impurities**





#### **Organic impurities**



Individual substance Ph. Eur. monograph

Table 2034.-1. – Reporting, identification and qualification of organic impurities in active substances

| Use                                                  | Maximum<br>daily<br>dose | Report-<br>ing<br>threshold | Identification<br>threshold                                                           | Qualification<br>threshold                                                            |
|------------------------------------------------------|--------------------------|-----------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Human<br>use or<br>human<br>and<br>veterinary<br>use | ≤ 2 g/day                | > 0.05 per<br>cent          | > 0.10 per<br>cent or a<br>daily intake<br>of > 1.0 mg<br>(whichever is<br>the lower) | > 0.15 per<br>cent or a<br>daily intake<br>of > 1.0 mg<br>(whichever is<br>the lower) |
| Human<br>use or<br>human<br>and<br>veterinary<br>use | > 2 g/day                | > 0.03 per<br>cent          | > 0.05 per<br>cent                                                                    | > 0.05 per<br>cent                                                                    |
| Veterinary<br>use only                               | Not<br>applicable        | > 0.10 per<br>cent          | > 0.20 per<br>cent                                                                    | > 0.50 per<br>cent                                                                    |

Table 2034.-2. – Reporting, identification and qualification of organic impurities in peptides obtained by chemical synthesis

| Reporting      | Identification | Qualification  |
|----------------|----------------|----------------|
| threshold      | threshold      | threshold      |
| > 0.1 per cent | > 0.5 per cent | > 1.0 per cent |



### A short guide...

Related substances (Organic impurities)

Understand risks for the quality of the API Acceptance criteria for impurities to be justified based on their **fate and carryover** up to the final substance, meaning, the ability of the process to <u>purge</u> them

Limit major/recurrent impurities as specified impurities Understand the risk of having uncontrolled impurities up to the API to ensure compliance

- Special attention to be given to: \* Intermediates late in the process including the crude API
- \* Related substances controlled upstream by an analytical procedure **different** from the one at release
- \* API-like impurities



#### **Certification of suitability to Ph. Eur. monographs**





## **Certification of suitability to Ph. Eur. monographs**

#### Limits:

- impurity F: not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent);
- unspecified impurities: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.10 per cent);
- total: not more than twice the area of the principal peak in the chromatogram obtained with reference solution (a) (0.2 per cent);
- disregard limit: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.05 per cent).

Other detectable impurities may not be present in all processes. They are listed as detectable by the Ph. Eur. Monograph method.

#### IMPURITIES

#### Specified impurities: F.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use (2034)*. It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. Control of impurities in substances for pharmaceutical use): A, B, C, D, E, G, H.



Other detectable (unspecified) impurities from the transparency list: NMT 0.10%



Only specified impurity from the transparency list: NMT 0.1%

Related substances

Organic impurities)



Are all the impurities from the transparency list possible by the the RoS used?

#### IMPURITIES

Specified impurities: F.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use (2034)*. It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. Control of impurities in substances for pharmaceutical use): A, B, C, D, E, G, H.







Ph. Eur. Imp A: unreacted SM1 carried over in Stage-1 and transformed, further carried over and transformed in Stage-2
Ph. Eur. Imp B: not from the same route of synthesis.
Ph. Eur. Imp C: intermediate B unreacted and carried over in final API,
Ph. Eur. Imp D: monomethylated impurity, derived from intermediate B,
Ph. Eur. Imp E: cyclization with formaldehyde and Ph. Eur. Imp D during Stage-3,
Ph. Eur. Imp G: potentially formed by reduction of precursor impurity of Ph. Eur. Imp F,
Ph. Eur. Imp H: unlikely from the RoS.



# Case study (fictitious)

#### **Venlafaxine hydrochloride:**



European Directorate Direction europée for the Quality de la qualité of Medicines du médicament & HealthCare & soins de santé

# Starting materials (3.2.S.2.3)

Related substances (Organic impurities)

| SM1                                     | OH Thionyl chloride                                                                     | NaCN<br>TBAB<br>Toluene |                                                         |
|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|
| Impurity                                | Origin, fate and carry over                                                             | Batch data              | Limit/Control strategy                                  |
| Thionyl chloride                        | Reactive reagent, hydrolyzed during work-up                                             | ND                      | See mutagenic impurities                                |
| Precursor 1<br>4-methoxybenzyl alcohol  | Precursor. Found <0.05% in INT-A.                                                       | 0.21%                   | Controlled as specified impurity in the SM at NMT 1.0%  |
| Precursor 2<br>4-methoxybenzyl chloride | Precursor, alerting structure (see <b>mutagenic impurities</b> ).                       | 0.02%                   | Controlled as specified impurity in the SM at NMT 0.15% |
| Impurity RRT 0.92                       | Likely by-product. Found <0.05% in INT-A. Fate impurity RRT 1.15, found 0.21% in INT-A. | 0.25%                   | Controlled as specified impurity in the SM at NMT 0.40% |

|                                                    | Impurity         | Limit        |
|----------------------------------------------------|------------------|--------------|
|                                                    | Precursor 1      | NMT 1.0%     |
| which specification ?                              | Precursor 2      | NMT 0.15%    |
|                                                    | Impurity RRT 0.9 | 92 NMT 0.40% |
| Fate: potential by-products, side-reactions should | Unspecified imp. | NMT 0.25%    |
| be considered as well!                             | Total            | NMT 1.5%     |





15 © EDQM, Council of Europe, 2024. All rights reserved.

# Starting materials (3.2.S.2.3)

Related substances (Organic impurities)



| Impurity                   | Origin, fate and carry                                                                | over          | Batch da | ita             | Limit/Control strategy                         |
|----------------------------|---------------------------------------------------------------------------------------|---------------|----------|-----------------|------------------------------------------------|
| Precursor 1 (cyclohexane)  | Precursor. Eliminated during filtration in INT-A. Found <0 INT-A and in INT-B.        | 0.05% in      | 0.11%    | Contro<br>NMT 1 | lled as specified impurity in the SM at .0%    |
| Precursor 2 (cyclohexanol) | Precursor. Eliminated during filtration in INT-A. Found <0 INT-A. Tested ND in INT-B. | 0.05% in      | 0.13%    | Contro<br>NMT 0 | lled as specified impurity in the SM at .20%   |
| Impurity RRT 0.88          | Likely by-product. Found <0<br>INT-A.                                                 | 0.05% in      | 0.06%    | Contro<br>NMT 0 | lled as unspecified impurity in the SM at .15% |
|                            |                                                                                       | Impurity      |          | Limit           |                                                |
|                            |                                                                                       | Precursor 1   | I        | NMT 1.0%        | -                                              |
|                            | Which enacification 2                                                                 | Precursor 2   | I        | NMT 0.20%       |                                                |
|                            |                                                                                       | Unspecified i | imp. I   | NMT 0.15%       |                                                |

Total

NMT 1.5%

Fate: Potential by-products, side-reactions should be systematically considered!

SM2

#### Intermediates (3.2.S.2.4)

Related substances (Organic impurities)

#### INT-A

| Impurity          | Origin, fate and carry over                                                                     | Batch data | Limit/Control strategy                        |
|-------------------|-------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|
| SM1               | SM. Absent (<0.05%) in INT-B. Tested ND in API.                                                 | 0.19%      | Controlled as specified impurity at NMT 0.3%  |
| Impurity RRT 1.15 | From Imp RRT 0.92. Tested ND in API. Fate impurity found in Int-B (0.15%).                      | 0.21%      | Controlled as specified impurity at NMT 0.25% |
| SM2               | SM. Absent (<0.05%) in INT-B. Tested ND in API. Fate impurity cyclohexanol, tested ND in INT-B. | 0.53%      | Controlled as specified impurity at NMT 1.0%  |

|   |                       | Impurity          | Limit     |
|---|-----------------------|-------------------|-----------|
|   |                       | SM 1              | NMT 0.3%  |
|   | Which specification ? | SM 2              | NMT 1.0%  |
| r |                       | Impurity RRT 1.15 | NMT 0.25% |
|   |                       | Unspecified imp.  | NMT 0.15% |
|   |                       | Total             | NMT 1.5%  |



### Intermediates (3.2.S.2.4)

Related substances (Organic impurities)

| INT-B                 |                                                                                                  |                                         |            |                                                          |
|-----------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|------------|----------------------------------------------------------|
| Impurity              | Origin, fate and carr                                                                            | ry over                                 | Batch data | Limit/Control strategy                                   |
| SM1                   | SM. Absent (<0.05%) in Int-0                                                                     | C                                       | 0.02%      | Controlled as unspecified impurity                       |
| INT-A                 | Unreacted intermediate carrie<br>Eliminated during crystallisati<br>When spiked at 2.0%, found   | ed over.<br>on of INT-C.<br>ND in INT-C | 0.58%      | Controlled as specified impurity at NMT 2.0% in INT-B    |
| Deshydrated impurity  | Dehydration of Int-B. Found N<br>Fate impurity: Ph. Eur. Imp F<br>controlled as specified        | ND in INT-C.<br>in Int-C/API,           | 0.32%      | Controlled as specified impurity at NMT 0.80% in INT-B   |
| Hydrogenated impurity | Reduced impurity, found ND (<br>Int-C. Fate impurity: Ph. Eur.<br>C/API, controlled as unspecifi | (< 0.05%) in<br>Imp G in Int-<br>ed     | 0.06%      | Controlled as unspecified impurity at NMT 0.15% in INT-B |
| Impurity RRT 1.20     | Process impurity, originating f                                                                  | from Int A                              | 0.15%      | Controlled as specified impurity at NMT 0.20% in INT-B   |
|                       |                                                                                                  | Impurity                                | Limit      |                                                          |
|                       |                                                                                                  | Int-A                                   | NMT 2.0%   |                                                          |
|                       | Which specification ?                                                                            | Dehydrated imp                          | NMT 0.80%  |                                                          |
|                       |                                                                                                  | Impurity RRT 1.20                       | NMT 0.20%  |                                                          |
|                       |                                                                                                  | Unspecified imp.                        | NMT 0.15%  |                                                          |
|                       |                                                                                                  | Total                                   | NMT 3.0%   |                                                          |



### Intermediates (3.2.S.2.4)

#### INT-C

Related substances (Organic impurities)

| Impurity               | Origin, fate and carry over                                           | Batch data | Limit/Control strategy                                                                        |
|------------------------|-----------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------|
| Ph. Eur. Imp F         | Dehydration impurity. Removed during crystallization stage            | 0.38%      | Controlled as specified impurity at NMT 0.50% in INT-C and at NMT 0.1% in API                 |
| INT-B (Ph. Eur. Imp C) | Process impurity. Removed during crystallization. Found <0.05% in API | 0.27%      | Controlled as specified impurity at NMT 0.40% in INT-C and as unspecified impurity in the API |
| Ph. Eur. Imp D         | Process impurity, uncomplete<br>methylation. Found <0.05% in API      | 0.09%      | Controlled as unspecified impurity at NMT 0.10% in INT-C and in the API                       |
| Impurity RRT 1.10      | From previous step. Found <0.05% in API                               | 0.11%      | Controlled as specified impurity at NMT 0.15% in INT-C and in the API as unspecified impurity |



Assuming Ph. Eur. Monograph method for Related Substances is used for control of the API

| Impurity          | Limit     |
|-------------------|-----------|
| Ph. Eur. Imp F    | NMT 0.50% |
| INT-B             | NMT 0.40% |
| Impurity RRT 1.10 | NMT 0.15% |
| Unspecified imp.  | NMT 0.10% |
| Total             | NMT 1.0%  |

It is expected that special attention should be paid to the impact of impurities generated/carried-over from the latest intermediates to the API.



### Overview of the control strategy

|        |                            | SM1   | SM2   | Int-A | Int-B | Int-C   | API      | Origin, fate and carry over                                                  | Limit/Control strategy                                                               |
|--------|----------------------------|-------|-------|-------|-------|---------|----------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|        | Precursor 1                | 0.21% |       | ND    |       |         |          | Precursor SM1. Found ND in Int-A & B                                         | Controlled in SM1 at NMT 1.0%.                                                       |
| SM1    | Precursor 2                | 0.02% |       | ND    | ND    |         | ND       | Precursor SM1, potential mutagenic impurity<br>(Class 3). Found ND in Int-A. | Controlled in SM1 at NMT 0.15%. Discussed under mutagenic impurities.                |
|        | RRT 0.92                   | 0.25% |       | ND    |       |         |          | By-product. Found ND in Int-A                                                | Controlled in SM1 at NMT 0.40%, as unsp. in INT-A.                                   |
| M2     | Cyclohexane                |       | 0.11% | 0.02% | ND    | ND      |          | Precursor of SM2, eliminated through washings, absent in Int-B, C and API    | Controlled in SM2 at <b>NMT 1.0%</b> , tested ND in INT-C as residual solvent        |
| S      | Cyclohexanol               |       | 0.08% | ND    | ND    |         |          | Precursor of SM2, absent in Int-B                                            | Controlled in SM2 at <b>NMT 0.25%.</b>                                               |
| 4      | SM1                        |       |       | 0.89% | 0.02% |         | ND       | Unreacted SM1, 0.02% in Int-B, tested ND in API                              | Controlled in INT-A at <b>NMT 1.0%</b> , as unsp. in INT-B.                          |
| Int-/  | SM2                        |       |       | 0.53% | ND    |         | ND       | Unreacted SM2, absent in Int-B, tested ND                                    | Controlled in Int-A at <b>NMT 1.0%</b> and in INT-B and API as unspecified.          |
|        | RRT 1.15                   |       |       | 0.21% | ND    | Can I   | be inclu | uded in the ate imp. RRT 1.20                                                | Controlled in Int-A at NMT 0.25%.                                                    |
|        | INT-A                      |       |       |       | 0.58% | Quality | y Over   | all Summary ID in Int-C                                                      | Controlled in INT-B as specified at <b>NMT 2.0%</b> .                                |
| 8<br>L | Dehydro                    |       |       |       | 0.32% | ND      |          | Process imp. Found ND in Int-C.                                              | Controlled in INT-B as specified at <b>NMT 0.80%</b> .                               |
| I      | Hydrogenated               |       |       |       | 0.06% | ND      |          | Process imp. Found ND in Int-C.                                              | Controlled in INT-B as unspecified at <b>NMT 0.15%</b> .                             |
|        | RRT 1.20                   |       |       |       | 0.15% | ND      | ND       | From imp RRT 1.15, fate imp. RRT 1.10                                        | Controlled in INT-B as specified at <b>NMT 0.20%</b> .                               |
|        | INT-B (Ph. Eur.<br>Imp. C) |       |       |       |       | 0.27%   | Unsp.    | Int. carried in Int-C. Eliminated during crystallization of API.             | Controlled in INT-C as specified at <b>NMT 0.40%</b> and as unspec. impurity in API. |
| Int-C  | Ph. Eur. Imp F             |       |       |       |       | 0.38%   | Spec.    | Process impurity from dehydro imp. & deg API.                                | Controlled in Int-C as specified at <b>NMT 0.50%</b> , in API at <b>NMT 0.1%</b> .   |
|        | RRT 1.10                   |       |       |       |       | 0.11%   | Unsp.    | From imp. RRT 1.20. Found at 0.02% in API                                    | Controlled in Int-C at <b>NMT 0.15%</b> , in API as unspec. impurity.                |

20 © EDQM, Council of Europe, 2024. All rights reserved.



Related substances (Organic impurities)

#### Related substances. Liquid chromatography (2.2.29).

#### Limits:

- *impurity F*: not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent);
- unspecified impurities: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.10 per cent);
- total: not more than twice the area of the principal peak in the chromatogram obtained with reference solution (a) (0.2 per cent);
- disregard limit: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.05 per cent).

#### Venlafaxine hydrochloride specification:

| Impurity             | Limit     | Batch data  | Method           |
|----------------------|-----------|-------------|------------------|
| Ph. Eur. Impurity F  | NMT 0.1 % | 0.09-0.13%  | Ph. Eur. Current |
| Unspecified impurity | NMT 0.10% | <0.05-0.07% | edition          |
| Total impurities     | NMT 0.2%  | 0.14-0.20%  |                  |

In this case, related substances are controlled by the transparency list of the monograph **No in-house impurity present (i.e. >0.05%) in the API** 



Related substances (Organic impurities)

If in-house impurities are present?

If you are using an in-house analytical procedure?

How to handle the situation?

Which impurity to include in the specification?



### **In-house impurities**





Suitability (or unsuitability) of the analytical procedure of the monograph to control all the related substances present/limited above the disregard limit should be demonstrated

#### Alternative analytical procedure

- When: Ph. Eur. analytical procedure **is suitable** to control in-house impurities, but in-house procedures may be used
- Equivalent results comparing to the corresponding Ph. Eur. procedure(s): cross-validation data on the same batches, using spiked solutions if necessary
- Validation in line with ICH Q2(R2)

#### Additional analytical procedure

- When : Ph. Eur. analytical procedure is **not suitable** to control in-house impurities
- To supplement monograph procedure(s)
- Unless absence of corresponding impurities is demonstrated, it will be reported on CEP
- Validation in line with ICH Q2(R2)



#### **Other situations : specifications for in-house impurities 1, 2 and 3 ?**





#### **Other situations : specifications for in-house impurities 1, 2 and 3 ?**





#### **Other situations : specifications for in-house impurities 1, 2 and 3 ?**

| Impurity                          | Limit     | Batch data | Method                       |
|-----------------------------------|-----------|------------|------------------------------|
| Ph.Eur. Impurity F                | NMT 0.1%  | 0.05-0.08% | HPLC                         |
| In-house impurity 3<br>(RRT 1.10) | NMT 0.15% | 0.08-0.12% | 2.2.29 &<br>Ph. Eur.<br>2119 |
| Unspecified impurity              | NMT 0.10% | 0.01-0.06% |                              |
| Total impurities                  | NMT 0.2%  | 0.14-0.23% |                              |

Reporting threshold: 0.05%







Related substances (Organic impurities)

27 © EDQM, Council of Europe, 2024. All rights reserved.

Related substances (Organic impurities)

#### **Specification for related substances:**





#### **Other situations : specifications for in-house impurities 4 and 5?**

Impurity Limit **Batch data** Method Ph. Eur. Impurity F HPLC 2.2.29 In-house imp. NMT 0.1% 0.05-0.08% Detected above & Ph. Eur. the reporting NMT 0.10% 0.01-0.06% Unspecified impurity 2119 threshold? No Yes Total impurities NMT 0.2% 0.18-0.23% **In-house impurity 4** 0.01-0.03% In-house ? The impurity is Detected by the absent and not monograph controlled in the API, 0.05-0.11% **In-house impurity 5** method? no action needed Yes No (RRT 1.10) Reporting threshold: 0.05% Impurity to be Can the impurity limited in line with be controlled as GM 2034, In-house unspecified? Impurity always found below the reporting threshold, method appended Yes No can be considered absent. No need to Impurity to be report in the limited in line with GM 2034 specification **CEP** 2.0  $\triangleleft$  If control is implemented although not needed: Suitability of Ph. Eur. to be demonstrated If not suitable, in-house method to be appended



#### **Other situations : specifications for in-house impurities 4 and 5?**





#### **Other situations : specifications for in-house impurities 4 and 5?**





Related substances (Organic impurities)

31 © EDQM, Council of Europe, 2024. All rights reserved.

Related substances (Organic impurities)

#### **Specification for related substances:**

| Ph.Eur. Impurity F       NMT $0.1\%$ $0.05 - 0.08\%$ Ph. Eur.         Unspecified impurity       NMT $0.10\%$ $0.01 - 0.06\%$ Ph. Eur.         Total impurities       NMT $0.2\%$ $0.18 - 0.23\%$ In-house         In-house impurity 5       NMT $0.15\%$ $0.05 - 0.11\%$ In-house | Ph.Eur. Impurity F       NMT $0.1\%$ $0.05 - 0.08\%$ Ph. Eur.         Unspecified impurity       NMT $0.10\%$ $0.01 - 0.06\%$ Ph. Eur.         Total impurities       NMT $0.2\%$ $0.18 - 0.23\%$ Ph. Eur.         In-house impurity 5<br>(RRT 1.10)       NMT $0.15\%$ $0.05 - 0.11\%$ In-house | Impurity                          | Limit               | Batch data        | Method                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|-------------------|-----------------------------|
| Unspecified impurityNMT $0.10\%$ $0.01 - 0.06\%$ Ph. Eur.<br>current editionTotal impuritiesNMT $0.2\%$ $0.18 - 0.23\%$ In-house impurity 5In-house impurity 5NMT $0.15\%$ $0.05 - 0.11\%$ In-house                                                                                | Unspecified impurityNMT 0.10% $0.01 - 0.06\%$ Ph. Eur.<br>current editionTotal impuritiesNMT 0.2% $0.18 - 0.23\%$ In-house impurity 5<br>(RRT 1.10)NMT 0.15% $0.05 - 0.11\%$ In-house                                                                                                            | Ph.Eur. Impurity F                | NMT 0.1%            | 0.05 – 0.08%      |                             |
| Total impurities         NMT 0.2%         0.18 – 0.23%           In-house impurity 5         NMT 0.15%         0.05 – 0.11%         In-house                                                                                                                                       | Total impurities         NMT 0.2%         0.18 – 0.23%           In-house impurity 5<br>(RRT 1.10)         NMT 0.15%         0.05 – 0.11%         In-house                                                                                                                                       | Unspecified impurity              | NMT 0.10%           | 0.01 - 0.06%      | Ph. Eur.<br>current edition |
| In-house impurity 5 NMT 0.15% 0.05 – 0.11% <b>In-house</b>                                                                                                                                                                                                                         | In-house impurity 5<br>(RRT 1.10) NMT 0.15% 0.05 – 0.11% <b>In-house</b>                                                                                                                                                                                                                         | Total impurities                  | NMT 0.2%            | 0.18 - 0.23%      |                             |
| (RRI 1.10)                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  | In-house impurity 5<br>(RRT 1.10) | NMT 0.15%           | 0.05 - 0.11%      | In-house                    |
|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                  | Specification for the final sub   | stance in section 3 | .2.S.4.1 should   | make reference              |
| <b>CEP 2.0</b><br>Specification for the final substance in section 3.2.S.4.1 should make reference t                                                                                                                                                                               | Specification for the final substance in section 3.2.S.4.1 should make reference t                                                                                                                                                                                                               | of analytical proc                | oduro (i o "Dh Fu   | r " or "in-house  | ") heing used               |
| Specification for the final substance in section 3.2.S.4.1 should make reference to of analytical procedure (i.e. "Ph. Eur." or "in-house") being used.                                                                                                                            | Specification for the final substance in section 3.2.S.4.1 should make reference t<br>of analytical procedure (i.e. "Ph. Eur." or "in-house") being used.<br>The in-house analytical procedure for impurity 5 is additional to Ph. Eur. and                                                      | The in-house analytical pro-      | cedure for impuri   | ty 5 is addition: | al to Dh. Fur and           |



### **Carry-over of impurities**



European Directorate | Direction européen for the Quality | de la qualité of Medicines | du médicament & HealthCare | & soins de santé

CONSEIL DE L'EURO

### **Mutagenic impurities**





Potential mutagenic impurities

#### **Reference guideline:**

**ICH M7(R2)** Guideline on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

- ICH M7(R2) Addendum on application of the principles of the ICH M7 guideline to calculation of compound-specific acceptable intakes
- ICH M7(R2) Questions and Answers on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

<u>For veterinary products:</u> Guideline on assessment and control of DNA reactive (mutagenic) impurities in veterinary medicinal products (EMA/CVMP/SWP/377245/2016)

#### → <u>Definition of mutagenic</u>: Inducing or capable of inducing genetic mutation



### **Mutagenic impurities**

Potential mutagenic impurities




Potential mutagenic impurities

### 1) Active substance assessment

Actual and potential impurities that are likely to arise during the synthesis (synthetic impurities) and storage (degradation products) of a drug substance are to be assessed for **MUTAGENIC POTENTIAL** 

#### Actual impurities Identified, known structure

Impurities found above ICH Q3A reporting threshold

#### **Potential impurities** Likely to be present in the final substance

Starting materials (its impurities & depending on where introduced in the process, also their synthesis), reagents, intermediates and byproducts in the route of synthesis from the starting material to the active substance



### 2) Hazard assessment and classification as per ICH M7

# ICH M7: There is an expectation that structural alert assessment will be conducted using (Q)SAR prediction.

- → In-silico assessment is expected using (Quantitative) Structure-Activity Relationships (SAR) that predict bacterial mutagenicity
- → Two complementary (Q)SAR systems: Expert-rule based and statistical based

<u>Class 1</u>: Specific permitted daily exposure (ICH M7 addendum) <u>Class 2</u>: No specific permitted daily exposure (TTC approach) <u>Class 3</u>: Unstudied mutagenicity

| Class | Definition                                                                                                                                                                       | Proposed action for control (details in<br>Section 7 and 8)                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Known mutagenic carcinogens                                                                                                                                                      | Control at or below<br>compound- specific acceptable limit                                                                                                     |
| 2     | Known mutagens with<br>unknown carcinogenic potential<br>(bacterial mutagenicity positive*, no rodent<br>carcinogenicity data)                                                   | Control at or below acceptable limits<br>(appropriate TTC)                                                                                                     |
| 3     | Alerting structure, unrelated to the structure of<br>the drug substance;<br>no mutagenicity data                                                                                 | Control at or below acceptable limits<br>(appropriate TTC) or conduct bacterial<br>mutagenicity assay;<br>If non-mutagenic = Class 5 If mutagenic<br>= Class 2 |
| 4     | Alerting structure, same alert in drug substance<br>or compounds related to the drug substance<br>(e.g., process intermediates) which have been<br>tested and are non- mutagenic | Treat as non-mutagenic impurity                                                                                                                                |
| 5     | No structural alerts, or alerting structure with<br>sufficient data to demonstrate lack of<br>mutagenicity or carcinogenicity                                                    | Treat as non-mutagenic impurity                                                                                                                                |

ICH M7 Table 1 Classification of impurities with respect to mutagenic and carcinogenic potential



For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements



|                                |          |                  | (µg/day) |                              |  |  |
|--------------------------------|----------|------------------|----------|------------------------------|--|--|
| Linear extrapolation from TD50 |          |                  |          |                              |  |  |
| Acrylonitrile                  | 107-13-1 | H <sub>2</sub> C | 6        | TD50 linear<br>extrapolation |  |  |
| Benzyl chloride                | 100-44-7 | CI               | 41       | TD50 linear<br>extrapolation |  |  |

Duration of treatment $\leq 1$ <br/>month>1 - 12<br/>months>1 - 10<br/>Years>10 years to lifetimeDaily intake [µg/day]12020101.5



For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements



MDD and information regarding the use of the substance to be included in 3.2.S.1.3 along with route of administration and treatment duration considered for development of the control strategy and specification.



For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements





Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements

| Option 1 | Control ≤ acceptable limit in the final substance<br>Impurities introduced in the last step of the synthesis, unless otherwise justified<br>( <i>Refer to ICH M7 Q&amp;A document</i> )                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 2 | Control $\leq$ acceptable limit in a raw material, SM or intermediate or as an IPC                                                                                                                                                                                                              |
| Option 3 | <b>Control &gt; acceptable limit in a raw material, SM or intermediate or as an IPC.</b><br>Suitability of the proposed limit is to be justified, demonstrating levels of the impurity being <30% acceptable limit in the API. Spike-purge studies are highly encouraged.                       |
| Option 4 | Understanding the process and its effects on impurities, so that risk of an impurity residing in the final substance above the acceptable limit is determined to be negligible. Supported by calculated purge factors and if relevant batch data (if introduced or formed late in the process). |
|          | (e.g. impurities inherently unstable, introduced early and well purged etc.)                                                                                                                                                                                                                    |





If three or more class 2 or class 3 impurities are controlled in the API: →Implement a limit for **total mutagenic impurities** in addition to individual limits (ICH M7 table 3)



For all carry-over studies, **suitable and relevant validation data in line with ICH Q2 (R2)** of the analytical procedure used have to be provided.



Regarding periodic verification testing (i.e. testing on pre-selected batches or at predetermined intervals instead of on a batch-to-batch basis): → To be applied only when **option 1** control strategy is in place → Not appropriate for options 2 and 3



## **Venlafaxine hydrochloride:**









45 © EDQM, Council of Europe, 2024. All rights reserved.

## 2) Hazard assessment for mutagenic impurities Ph.Eur. impurity C methane sulfonic acid **Isopropanol Methanol By-products: Corresponding sulfonate esters, known mutagens:** Methyl methanesulfonate and isopropyl methanesulfonate







47 © EDQM, Council of Europe, 2024. All rights reserved.

Potential mutagenic impurities

### 2) Hazard assessment and classification as per ICH M7

| Impurity                                                                | Origin | Hazard assessment                                                                                                                                             | Class   |
|-------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Formaldehyde                                                            | Step 3 | Known mutagenic carcinogen (ICH M7 addendum)<br>→ Not considered mutagenic when taken orally<br>(PDE 10000µg/d – acceptable limit is > as ICH Q3A thresholds) | Class 1 |
| Methyl methanesulfonate<br>(MMS) & isopropyl<br>methanesulfonate (IPMS) | Step 2 | Mesylates : Known mutagens with unknown carcinogenic potential<br>→ In-vitro mutagenicity data (literature)<br>Positive outcome.                              | Class 2 |
| Precursor SM1                                                           | SM 1   | Alkyl chloride alerting structure<br>→ No database or literature data. No mutagenicity data.                                                                  | Class 3 |
| Thionyl chloride                                                        | SM 1   | Known mutagen                                                                                                                                                 | Class 1 |



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

| Impurity         | Origin | Classification | Control in line<br>with ICH M7 | Justification                      |
|------------------|--------|----------------|--------------------------------|------------------------------------|
| Paraformaldehyde | Step 3 | Treat as non-m | utagenic as the subs           | stance is administered orally only |
| MMS & IPMS       | Step 2 | Class 2        | ?                              | ?                                  |
| Precursor SM1    | SM 1   | Class 3        | ?                              | ?                                  |
| Thionyl chloride | SM 1   | Class 1        | ?                              | ?                                  |



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

| Impurity         | Origin | Classification | Control in line<br>with ICH M7 | Justification                                                          |
|------------------|--------|----------------|--------------------------------|------------------------------------------------------------------------|
| Paraformaldehyde | Step 3 | Treat as non-m | utagenic as the subs           | stance is administered orally only                                     |
| MMS & IPMS       | Step 2 | Class 2        | ?                              | ?                                                                      |
| Precursor SM1    | SM 1   | Class 3        | ?                              | ?                                                                      |
| Thionyl chloride | SM 1   | Class 1        | Option 4                       | Used pre-SM, Highly reactive in water used widely ahead in the process |

Acceptable limit=
$$\frac{PDE\left(\frac{\mu g}{day}\right)}{MDD\left(\frac{g}{day}\right)}$$

#### **Information regarding the substance**:

→ <u>MDD</u>: 424.5 mg/d
 → <u>Route of administration</u>: Oral
 → <u>Treatment duration</u>: >10 years to lifetime



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

|               | Origin | Classification | Control in line<br>with ICH M7 | Justification |
|---------------|--------|----------------|--------------------------------|---------------|
| MMS & IPMS    | Step 2 | Class 2        | ?                              | ?             |
| Precursor SM1 | SM 1   | Class 3        | ?                              | ?             |

TTC limit = 
$$\frac{1.5 \left(\frac{\mu g}{day}\right)}{0.4245 \left(\frac{g}{day}\right)} = 3.53 \text{ ppm}$$

Proposed control in Venlafaxine base MMS : NMT 100 ppm IPMS: NMT 100 ppm

→ ICH M7 option  $3 \rightarrow Spike/purge studies$ 

#### Justification:

- a) Spiking the base with 200 ppm of MMS and IPMS <u>Results</u>: Not detected (LOD 0.3 ppm; LOQ 1.0 ppm) in the API by GC-MS
   → Found <30% of the TTC limit</li>
- b) <u>Carry-over data to the API</u>: Not detected (LOD 0.3 ppm; LOQ 1.0 ppm)
   → Found <30% of the TTC limit</li>



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

|               | Origin | Classification | Control in line<br>with ICH M7 | Justification                   |
|---------------|--------|----------------|--------------------------------|---------------------------------|
| MMS & IPMS    | Step 2 | Class 2        | Option 3                       | Spiking study + Carry-over data |
| Precursor SM1 | SM 1   | Class 3        | ?                              | ?                               |

TTC limit = 
$$\frac{1.5 \left(\frac{\mu g}{day}\right)}{0.4245 \left(\frac{g}{day}\right)} = 3.53 \text{ ppm}$$

Proposed control in Venlafaxine base MMS : NMT 100 ppm IPMS: NMT 100 ppm

```
→ ICH M7 option 3 \rightarrow Spike/purge studies
```

#### Justification:

- a) Spiking the base with 200 ppm of MMS and IPMS <u>Results</u>: Not detected (LOD 0.3 ppm; LOQ 1.0 ppm) in the API by GC-MS
   → Found <30% of the TTC limit</li>
- b) <u>Carry-over data to the API</u>: Not detected (LOD 0.3 ppm; LOQ 1.0 ppm)
   → Found <30% of the TTC limit</li>



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

|               | Origin | Classification | Control in line<br>with ICH M7 | Justification                   |
|---------------|--------|----------------|--------------------------------|---------------------------------|
| MMS & IPMS    | Step 2 | Class 2        | Option 3                       | Spiking study + Carry-over data |
| Precursor SM1 | SM 1   | Class 3        | ?                              | ?                               |



Proposed control for the precursor: NMT 0.15% in the SM1

**ICH M7 option 3**  $\rightarrow$  <u>Spike/purge studies</u>

#### Justification:

a) Spiking SM1 with 0.5% of precursor 1 <u>Results</u>: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in Venlafaxine base by LC-MS

 $\rightarrow$  Found <30% of the TTC limit

 b) <u>Carry-over data to Venlafaxine base</u>: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm)
 → Found <30% of the TTC limit</li>



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

|               | Origin | Classification | Control in line<br>with ICH M7 | Justification                   |
|---------------|--------|----------------|--------------------------------|---------------------------------|
| MMS & IPMS    | Step 2 | Class 2        | Option 3                       | Spiking study + Carry-over data |
| Precursor SM1 | SM 1   | Class 3        | Option 3                       | Spiking study + Carry-over data |



Proposed control for the precursor: NMT 0.15% in the SM1

**ICH M7 option 3**  $\rightarrow$  <u>Spike/purge studies</u>

#### Justification:

a) Spiking SM1 with 0.5% of precursor 1 <u>Results</u>: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in Venlafaxine base by LC-MS

 $\rightarrow$  Found <30% of the TTC limit

 b) <u>Carry-over data to Venlafaxine base</u>: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm)
 → Found <30% of the TTC limit</li>



Potential mutagenic impurities

### 3) Setting acceptable limits and propose a control strategy

| Impurity         | Origin | Classification | Control in line<br>with ICH M7 | Justification                                                                                              |
|------------------|--------|----------------|--------------------------------|------------------------------------------------------------------------------------------------------------|
| Formaldehyde     | Step 3 | Class 1        | Treat as                       | non-mutagenic for the oral route $\rightarrow$ ICH Q3A                                                     |
| MMS & IPMS       | Step 2 | Class 2        | Option 3                       | MMS and IPMS purged to levels <30% of the TTC limit in the API when present at 200 ppm in venlafaxine base |
| Precursor<br>SM1 | SM 1   | Class 3        | Option 3                       | Precursor purged to levels <30% of the TTC limit in a relevant intermediate when present at 0.5% in SM1    |
| Thionyl chloride | SM 1   | Class 1        | Option 4                       | Used pre-SM. Highly reactive in water used widely ahead in the process                                     |

Control strategy and the outcome of discussion to be summarised in section 3.2.S.3.2 – Mutagenic impurities



## **Nitrosamine impurities**





## **Nitrosamine impurities**

Nitroso impurities

**ICH M7** : structural groups identified to be of such high potency that intakes even below the TTC would theoretically be associated with a potential for a significant carcinogenic risk. This group is referred to as the "cohort of concern", comprises aflatoxin-like-, <u>N-nitroso</u>-, and alkyl-azoxy compounds.

#### **Specific references for nitrosamine impurities:**

→ Ph. Eur. 2.5.42

- $\rightarrow$  EMA assessment report of the CHMP's Article 5(3) of Regulation (EC) No 726/2004 opinion on nitrosamine impurities in human medicinal products (EMA/369136/2020): General guidance
- $\rightarrow$  Corresponding Q&A document:





## **Risk assessment in CEP dossiers – EMA Principles**





## **Risk assessment in CEP dossiers – EMA Principles**



# **Risk assessment in CEP dossiers – EMA Principles**





## **Nitrosamine impurities – Acceptable limit**

### How to define an acceptable limit for a nitrosamine impurity?



<u>Calculation of applicable limit:</u>

Limit (ppm) = ----

AI (ng) MDD (mg)



## Nitrosamine impurities – *Key point*

#### The EDQM relies on the EMA Q&A for the assessment of the risk nitrosamine impurities.

#### **Frequent revision of the Q&A or its corresponding appendixes:**



- Specific acceptable intakes (AI) for nitrosamines may be updated following toxicological assessment (e.g. Bacterial Reverse Mutation Test, in vivo studies etc.)
- > Additional nitrosamine impurities are frequently newly included in appendix 1.

→ CEP holders are expected to perform the risk assessment for nitrosamine impurities, and if relevant propose a control strategy according to most recent EU requirements.

The risk assessment is to be included in section 3.2.5.3.2 – Nitrosamine impurities



## **Residual solvents**





## **Residual solvents**

Residual solvents

ICH Q3C / Ph.Eur. 5.4 classification and recommended limits
CPMP/QWP/450/03 - Rev.1 (Annex I)

#### **ICH Class 1 solvent** (as contaminants of other solvents)

Solvents to be avoided, usually contaminants of solvents (e.g. benzene is a potential contaminant of acetone, toluene, methanol,...)

#### **Control needed in the API unless...**

| Option 1 | • Limit in originator solvent<br>ensuring class 1 solvent in the<br>API <30% ICH limit based on a<br>rationale.                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 2 | <ul> <li>Demonstrated &lt; 30% ICH limit<br/>in intermediate or API by a<br/>validated method on 3<br/>consecutive batches (or 6 pilot</li> </ul> |

batches).

### ICH Class 2 solvent

(solvents to be limited)

#### Control needed in the API if...



Non-classified ICH Q3C Solvents: toxicological justification for any proposed limit.



#### and microbiological quality Yes Low toxicity solvents (Class 3)

5000 ppm

can be limited by a test for loss on drying with a limit of not more than 0.5%, when appropriate. If the limit of the loss on drying test of the monograph is higher than 0.5%, then a specific test for residual solvents should be introduced.



NMT 0.5%

## **Class 3 solvents & Certification Procedure**

Residual solvents

edom

## Case study (fictitious)





Residual solvents

| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | ?               |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | ?               |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | ?               |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | ?               |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               |

Data obtained from controls in intermediates may also be used to show absence. Testing using GC methods (or other suitable) validated in line with ICH Q2 (R2)



67 © EDQM, Council of Europe, 2024. All rights reserved.

| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | ?               |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | ?               |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | ?               |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | ?               |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               |

Data obtained from controls in intermediates may also be used to show absence. Testing using GC methods (or other suitable) validated in line with ICH Q2 (R2)





Testing using GC methods (or other suitable) validated in line with ICH Q2 (R2).



69 © EDQM, Council of Europe, 2024. All rights reserved.

| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | ?               |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | x               |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | x               |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | X               |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               |

Testing using GC methods (or other suitable) validated in line with ICH Q2 (R2).



70 © EDQM, Council of Europe, 2024. All rights reserved.

| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |                                             |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|---------------------------------------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | ?               | $\longrightarrow Class 2, > 10\% ICH limit$ |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               |                                             |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | x               | Control in the API                          |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | X               | analytical method                           |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | X               |                                             |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               | -                                           |
|             |                        |                         |                          |              |                 |                                             |
|             |                        |                         | ↓<br>↓                   |              |                 |                                             |

Data obtained from controls in intermediates may also be used to show absence.



| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |                                            |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|--------------------------------------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | NMT 890 ppm     | $\longrightarrow$ Class 2, > 10% ICH limit |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               |                                            |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | X               | Control in the AP                          |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | x               | analytical metho                           |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | X               | Ų                                          |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               | Specification<br>limit according           |
|             |                        |                         |                          |              |                 | to ICH Q3C                                 |

Data obtained from controls in intermediates may also be used to show absence.



72 © EDQM, Council of Europe, 2024. All rights reserved.
# **Case study : Which specifications?**

| Solvent                                | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |                     |
|----------------------------------------|------------------------|-------------------------|--------------------------|--------------|-----------------|---------------------|
| Toluene                                | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | NMT 890 ppm     | Used last step.     |
| Ethanol                                | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | ?               | no loss on          |
| Isopropanol<br>Methanol<br>Formic acid | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | x               | the monograph       |
|                                        | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | x               | U<br>Control in API |
|                                        | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | X               | using a validated   |
| Benzene                                | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          | ?               |                     |
|                                        |                        |                         |                          |              |                 |                     |
|                                        |                        |                         | Ļ                        |              |                 |                     |

Data obtained from controls in intermediates may also be used to show absence.



# **Case study : Which specifications?**

| Solvent     | Used in stage<br>X / 4 | ICH classification        | Typical levels<br>in API                 | LOD<br>(ppm)         | Limit<br>in API |                                                |
|-------------|------------------------|---------------------------|------------------------------------------|----------------------|-----------------|------------------------------------------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm    | 7 – 93 ppm                               | 7                    | NMT 890 ppm     | Used last step.                                |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm   | <b>154 – 567 ppm</b>                     | 49                   | NMT 5000 ppm    | no loss on                                     |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm   | ND                                       | 77                   | X               | the monograph                                  |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm   | ND                                       | 6                    | X               | ↓<br>Control in API                            |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm   | ND                                       | 12                   | X               | using a validated<br>analytical method         |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm      | ND                                       | 0.5                  | ?               |                                                |
|             |                        |                           |                                          |                      |                 | Specification<br>limit according<br>to ICH Q3C |
|             |                        | Data obtained<br>may also | from controls in in<br>be used to show a | ntermedi<br>absence. | iates           |                                                |



74 © EDQM, Council of Europe, 2024. All rights reserved.

# **Case study : Which specifications?**

| Solvent     | Used in stage<br>X / 4 | ICH classification      | Typical levels<br>in API | LOD<br>(ppm) | Limit<br>in API |
|-------------|------------------------|-------------------------|--------------------------|--------------|-----------------|
| Toluene     | Stages 1 & 3           | Class 2<br>NMT 890 ppm  | 7 – 93 ppm               | 7            | NMT 890 ppm     |
| Ethanol     | Stage 4                | Class 3<br>NMT 5000 ppm | 154 – 567 ppm            | 49           | NMT 5000 ppm    |
| Isopropanol | Stages 2 & 3           | Class 3<br>NMT 5000 ppm | ND                       | 77           | x               |
| Methanol    | Stage 2                | Class 2<br>NMT 3000 ppm | ND                       | 6            | X               |
| Formic acid | Stage 3                | Class 3<br>NMT 5000 ppm | ND                       | 12           | X               |
| Benzene     | As contaminant         | Class 1<br>NMT 2 ppm    | ND                       | 0.5          |                 |



Class 1 solvent as contaminant, <30% ICH limit



### **Specification of the active substance**

Residual solvents

Outcome of discussion in section 3.2.S.3.2  $\rightarrow$  Specification as provided in section 3.2.S.4.1

| Solvent | ICH classification      | Limit in API |                            |
|---------|-------------------------|--------------|----------------------------|
| Toluene | Class 2<br>NMT 890 ppm  | NMT 890 ppm  | Class 2,<br>> 10%ICH limit |
| Ethanol | Class 3<br>NMT 5000 ppm | NMT 5000 ppm | Used in the<br>last step   |

If other solvents are included in section 3.2.S.4.1, these will be transparent on the CEP and the method used to detect them will be appended to the CEP.

Exercise to be summarised in section 3.2.S.3.2 - Residual solvents



### **Elemental impurities**





### Elemental impurities: references and control strategy

### ICH Q3D

- Covers **24** elements classified as : Class-1, Class-2A, Class-2B and Class-3
- Gives permitted daily exposure (PDE) according to the route of administration.

### • PA/PH/CEP (16) 23, 2R

- Risk assessment requirements to control elemental impurities
- Component Approach as per ICH Q3D (contribution of each component is identified, evaluated and summarized)

The control strategy should focus on presence or absence of elemental impurities in the API

**Presence** in API for an elemental impurity intentionally added :

- a justified **specification** should be applied
- Analytical methods should be described in 3.2.S.4.2, validation in line with ICH Q2(R2)

Absence in the API of intentionally added elemental impurity i.e. purged to a level consistently and convincingly below 30% of the defined limit : - the indicated route of administration - the ICH Q3D option 1 (API daily intake of NMT 10g) or option 2a when justified, - Analytical method identified (ICP/MS, ICP/OES,...), at least sensitivity (LOD/LOQ) to be provided

If elemental impurities are introduced into the *last synthetic step*, specification limit in the API is usually expected



**Elemental impurities** 

### Implementation of ICH Q3D in the CEP procedure

Elemental impurities Two possible approaches : Kev starting materials Metal





A Risk management summary for elemental impurities (RMS) is prepared:

besides the intentionally added element an or for a product dial assessment should also cover all ot

• Risk Management Summary Florinance the rationale of the study of medicinance • why impurities  $r^{ag}$  for dered • justify the column of the strategy • intender enges administration to be constituted as a set of the CED

- why impurities rage for the deredistify the course on trol strategy endered set of the course of the dered istify the course of the dered endered endered istates a dered strategy interval a RMS table  $\rightarrow$  intended interval to the CEP

Creening data do not replace a risk management summary

### **RMS** approach:

#### Elements to be considered:

- Elemental impurities derived from intentionally added catalysts and inorganic reagents whatever the route of administration
- Potential elemental impurities not intentionally added depending on the route of administration
- Potential elemental impurities derived from manufacturing equipment, water, leached from container closure system...

When multiple routes of administration possible for an API, the worst-case scenario has to be considered

|                 |       |                    | If not intentionally added |          |   |            |   |            |   |          |  |
|-----------------|-------|--------------------|----------------------------|----------|---|------------|---|------------|---|----------|--|
| <b>F</b> lowert |       | T6 intentionally   |                            | Oral     |   | Parenteral |   | Inhalation |   | Topical  |  |
| Liement         | Class | added (all routes) |                            |          |   |            |   | A          |   | <u> </u> |  |
| Cd              | 1     | Yes                | 1                          | Yes      | Í | Yes        |   | Yes        |   | Yes      |  |
| Pb              | 1     | Yes                | Í                          | Yes      | Í | Yes        |   | Yes        | ĺ | Yes      |  |
| As              | 1     | Yes                | İ                          | Yes      | Í | Yes        | Í | Yes        | ĺ | Yes      |  |
| Hg              | 1     | Yes                | İ                          | Yes      | Í | Yes        | j | Yes        | ĺ | Yes      |  |
| Со              | 2A    | Yes                | Π                          | Yes      |   | Yes        |   | Yes        | T | Yes      |  |
| V               | 2A    | Yes                | Í                          | Yes      | Í | Yes        |   | Yes        |   | Yes      |  |
| Ni              | 2A    | Yes                | j (                        | Yes      |   | Yes        | Í | Yes        | ĺ | Yes      |  |
| TI              | 2B    | Yes                |                            | No       |   | No         |   | No         | Τ | No       |  |
| Au              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Pd              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Ir              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Os              | 2B    | Yes                |                            | No No No |   | No         |   | No         |   |          |  |
| Rh              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Ru              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Se              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Ag              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Pt              | 2B    | Yes                |                            | No       |   | No         |   | No         |   | No       |  |
| Li              | 3     | Yes                |                            | No       |   | Yes        |   | (Yes       |   | No       |  |
| Sb              | 3     | Yes                |                            | No       |   | Yes        |   | Yes        |   | No       |  |
| Ba              | 3     | Yes                | ļ                          | No       | ļ | No         |   | Yes        | ļ | No       |  |
| Мо              | 3     | Yes                |                            | No       | ļ | No         |   | Yes        | ļ | No       |  |
| Cu              | 3     | Yes                | ļ                          | No       | ļ | Yes        |   | Yes        | ļ | No       |  |
| Sn              | 3     | Yes                |                            | No       |   | No         |   | Yes        |   | No       |  |
| Cr              | 3     | Yes                |                            | No       |   | No         |   | Yes        |   | No       |  |



Elemental impurities

### **Implementation of ICH Q3D in the CEP procedure**

Elemental impurities

#### Two possible approaches :

A Risk management summary for elemental impurities (RMS) is prepared:

- Besides the intentionally added elements, the assessment should also cover all other potential elemental impurities from other sources
- Risk Management Summary **report** should detail the rationale of the study:
  - why impurities are considered
  - justify the chosen control strategy
  - intended route of administration
- To be completed with a **RMS table** → intended to be annexed to the CEP

Batch screening data do not replace a risk management summary

No Risk management summary is prepared.

- Any elemental impurity after the introduction of the SMs should be declared and will be reported on the CEP
- If introduced in the last synthetic step, a control in the specification of the API should be included unless otherwise justified (levels below 30% of ICH Q3D limit)
- If control in the final API, validation of the method according to ICH Q2 (R2) should be provided and the **method** will be **appended** to the CEP
- If **no elemental impurity** is intentionally added, this will be <u>reported on the CEP.</u>

**RMS/no-RMS :** with both scenarios, EI included in the specification at release <u>if</u> proposed by the applicant  $\rightarrow$  mentioned on CEP



# Case study (fictitious)



Moreover, **Chromium** and **Molybdenum** have been considered as coming from the equipment used



## **RMS Table included in section 3.2.S.3.2**

| Impurity                                                                                                                                                                                                                       | Limit                                                                          | Batch data         | Origin                                       | Route of administration onsidered in the risk assessme |                        |                                           |                                                           |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------|------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| Palladium<br>Chromium<br>Molybdenum<br>- Option 1 lir                                                                                                                                                                          | 10 ppm < 1 ppm<br>300 ppm < 10 ppm<br>1100 ppm < 100 ppm<br>1100 ppm < 100 ppm |                    | Catalyst in step 2<br>Equipment<br>Equipment | Element<br>Cd<br>Pb<br>As                              | Class<br>1<br>1        | Intentionally<br>added?<br>No<br>No<br>No | Considered in<br>risk<br>management?<br>Yes<br>Yes<br>Yes | Conclusion<br>Absent<br>Absent<br>Absent  |
| -p                                                                                                                                                                                                                             |                                                                                |                    |                                              | Hg                                                     | 1<br>2A                | No<br>No                                  | Yes<br>Yes                                                | Absent<br>Absent                          |
| The control strat                                                                                                                                                                                                              | egy followed                                                                   | should be          | Route of administration                      | V<br>Ni                                                | 2A<br>2A               | No                                        | Yes                                                       | Absent<br>Absent                          |
| <ul> <li>clear and mentioned on the RMS:</li> <li> « Absent » should be defined (e.g.<br/>« less than 30% of ICHQ3D limit »)</li> <li>Or « NMT limit in ppm » calculated<br/>based on option 1 (or alternatively if</li> </ul> |                                                                                |                    | Elements considered                          | TI<br>Au                                               | 2Б<br>2В               | No<br>No                                  | No<br>No                                                  | Not applical                              |
|                                                                                                                                                                                                                                |                                                                                |                    | Elements intentionally                       | Pd<br>Jr<br>Os                                         | 2B<br>2B<br>2B         | Yes       No       No                     | No<br>No                                                  | Absent<br>Not applica<br>Not applica      |
| <ul> <li>justified, based on option 2a),</li> <li>Or « No risk identified ».</li> </ul>                                                                                                                                        |                                                                                | 2a),               | Report a conclusion on                       | Rh<br>Ru<br>Se                                         | 2B<br>2B<br>2B         | No<br>No<br>No                            | No<br>No<br>No                                            | Not applica<br>Not applica<br>Not applica |
| absence or contro                                                                                                                                                                                                              |                                                                                |                    | absence or control                           | Ag<br>Pt                                               | 2B<br>2B               | No<br>No                                  | No<br>No                                                  | Not applica<br>Not applica                |
| Skip testing to be justified in line with CEP 2.0                                                                                                                                                                              |                                                                                |                    | If term « Absent » is                        | Ch<br>Ba                                               | 3<br>3<br>3            | NO<br>NO<br>NO                            | NO<br>NO<br>NO                                            | Not applica<br>Not applica<br>Not applica |
|                                                                                                                                                                                                                                |                                                                                |                    | required                                     | Mo<br>Cu<br>Sn                                         | 3<br>3<br>3            | No<br>No                                  | Yes<br>No                                                 | Absent<br>Not applical                    |
| RMS table wil                                                                                                                                                                                                                  | CEP                                                                            | Cr<br>Note: "absen | 3<br>t" means les                            | No<br>s than 30% of I                                  | Yes<br>CH Q3D option 1 | Absent                                    |                                                           |                                           |



Not applicable Not applicable

Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable

Not applicable Not applicable

© EDQM, Council of Europe, 2024. All rights reserved. 83

### **Reagents and inorganic impurities**





# **Reagents & Inorganic impurities**

Reagents and Inorganic impurities

- Carry-over of reagents, in particular toxic reagents, to the final substance should be discussed, as applicable. (e.g. TBAB)
  - Absence of carry-over into the API is demonstrated using a validated method against a limit justified based on toxicological data

OR

- Routine control to be implemented at a suitable intermediate or final substance







## Case study (fictitious)

Reagents and Inorganic impurities





# **Reagents & Inorganic impurities**

| Reagents                       | Origin, fate and carry over                                                                                                       | Batch data | Limit |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| Sodium cyanide                 | Used in SM1 manufacturing. Found <0.05% in SM. Tested in API, found ND.                                                           | ND         | X     |
| Tetrabutyl ammonium<br>Bromide | Multiple steps up to the API. No risk of formation of nitrosamines identified. Low risk of carry-over. Tested in INT-B, found ND. | ND         | x     |
| Sodium hydroxide               | Washed along with water used in the manufacturing process.                                                                        | X          | x     |
| Formic acid                    | Discussed as solvent. <i>Refer to section 3.2.S.3.2 – Residual solvents</i> .                                                     | ND         | x     |
| Hydrogen gas                   | Gas removed at the end of the hydrogenation process.                                                                              | X          | x     |
| Hydrochloric acid              | Used in the last step, removed during washing and drying.                                                                         | x          | x     |
| Methane sulfonic acid          | Washed out during basic work-up. Absence demonstrated in INT-C.                                                                   | X          | x     |
| Formaldehyde                   | ICH M7 Class 1 impurity. Refer to section 3.2.S.3.2 – Mutagenic impuritie                                                         | 25.        |       |

Inorganic residues controlled by test of sulfated ash of the monograph.

Discussion to be included in section 3.2.S.3.2 – Inorganic reagents / impurities.



### Take home message...



Show knowledge and understanding of your specific process and resulting impurity profile

Show you have identified the risks for the quality of your active substance

Show your control strategy mitigates the risks you have identified for the quality of your active substance



# Thank you for your attention



### Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter LinkedIn: https://www.linkedin.com/company/edqm/ X: @edqm\_news Facebook: @EDQMCouncilofEurope



89 COE BORM Council of Europe 2002 4 A la Higigist coses noved.